shaka-packager/tools/gn/parser.cc

471 lines
15 KiB
C++

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "tools/gn/parser.h"
#include "base/logging.h"
#include "tools/gn/functions.h"
#include "tools/gn/operators.h"
#include "tools/gn/token.h"
namespace {
// Returns true if the two tokens are on the same line. We assume they're in
// the same file.
bool IsSameLine(const Token& a, const Token& b) {
DCHECK(a.location().file() == b.location().file());
return a.location().line_number() == b.location().line_number();
}
} // namespace
Parser::Parser(const std::vector<Token>& tokens, Err* err)
: tokens_(tokens),
err_(err),
cur_(0) {
}
Parser::~Parser() {
}
// static
scoped_ptr<ParseNode> Parser::Parse(const std::vector<Token>& tokens,
Err* err) {
Parser p(tokens, err);
return p.ParseBlock(false).PassAs<ParseNode>();
}
// static
scoped_ptr<ParseNode> Parser::ParseExpression(const std::vector<Token>& tokens,
Err* err) {
Parser p(tokens, err);
return p.ParseExpression().Pass();
}
bool Parser::IsToken(Token::Type type, char* str) const {
if (at_end())
return false;
return cur_token().type() == type || cur_token().value() == str;
}
scoped_ptr<AccessorNode> Parser::ParseAccessor() {
scoped_ptr<AccessorNode> accessor(new AccessorNode);
DCHECK(cur_token().type() == Token::IDENTIFIER);
accessor->set_base(cur_token());
cur_++; // Skip identifier.
cur_++; // Skip "[" (we know this exists because the existance of this
// token is how the caller knows it's an accessor.
if (at_end()) {
*err_ = MakeEOFError("Got EOF when looking for list index.");
return scoped_ptr<AccessorNode>();
}
// Get the expression.
scoped_ptr<ParseNode> expr = ParseExpression().Pass();
if (has_error())
return scoped_ptr<AccessorNode>();
if (at_end()) {
*err_ = MakeEOFError("Got EOF when looking for list accessor ]");
return scoped_ptr<AccessorNode>();
}
accessor->set_index(expr.Pass());
// Skip over "]"
if (!cur_token().IsScoperEqualTo("]")) {
*err_ = Err(cur_token(), "Expecting ]",
"You started a list access but didn't terminate it, and instead "
"I fould this\nstupid thing.");
return scoped_ptr<AccessorNode>();
}
cur_++;
return accessor.Pass();
}
// Blocks at the file scope don't need {} so we have the option to ignore
// them. When need_braces is set, we'll expect a begin an end brace.
//
// block := "{" block_contents "}"
// block_contents := (expression | conditional | block)*
scoped_ptr<BlockNode> Parser::ParseBlock(bool need_braces) {
scoped_ptr<BlockNode> block(new BlockNode(true));
// Eat initial { if necessary.
const Token* opening_curly_brace;
if (need_braces) {
if (at_end()) {
*err_ = MakeEOFError("Got EOF when looking for { for block.",
"It should have been after here.");
return scoped_ptr<BlockNode>();
} else if(!IsScopeBeginScoper(cur_token())) {
*err_ = Err(cur_token(), "Expecting { instead of this thing.",
"THOU SHALT USE CURLY BRACES FOR ALL BLOCKS.");
return scoped_ptr<BlockNode>();
}
opening_curly_brace = &cur_token();
block->set_begin_token(opening_curly_brace);
cur_++;
}
// Loop until EOF or end brace found.
while (!at_end() && !IsScopeEndScoper(cur_token())) {
if (cur_token().IsIdentifierEqualTo("if")) {
// Conditional.
block->append_statement(ParseCondition().PassAs<ParseNode>());
} else if (IsScopeBeginScoper(cur_token())) {
// Nested block.
block->append_statement(ParseBlock(true).PassAs<ParseNode>());
} else {
// Everything else is an expression.
block->append_statement(ParseExpression().PassAs<ParseNode>());
}
if (has_error())
return scoped_ptr<BlockNode>();
}
// Eat the ending "}" if necessary.
if (need_braces) {
if (at_end() || !IsScopeEndScoper(cur_token())) {
*err_ = Err(*opening_curly_brace, "Expecting }",
"I ran headlong into the end of the file looking for the "
"closing brace\ncorresponding to this one.");
return scoped_ptr<BlockNode>();
}
block->set_end_token(&cur_token());
cur_++; // Skip past "}".
}
return block.Pass();
}
// conditional := "if (" expression ")" block [else_conditional]
// else_conditional := ("else" block) | ("else" conditional)
scoped_ptr<ConditionNode> Parser::ParseCondition() {
scoped_ptr<ConditionNode> cond(new ConditionNode);
// Skip past "if".
const Token& if_token = cur_token();
cond->set_if_token(if_token);
DCHECK(if_token.IsIdentifierEqualTo("if"));
cur_++;
if (at_end() || !IsFunctionCallArgBeginScoper(cur_token())) {
*err_ = Err(if_token, "Expecting \"(\" after \"if\"",
"Did you think this was Python or something?");
return scoped_ptr<ConditionNode>();
}
// Skip over (.
const Token& open_paren_token = cur_token();
cur_++;
if (at_end()) {
*err_ = Err(if_token, "Unexpected EOF inside if condition");
return scoped_ptr<ConditionNode>();
}
// Condition inside ().
cond->set_condition(ParseExpression().Pass());
if (has_error())
return scoped_ptr<ConditionNode>();
if (at_end() || !IsFunctionCallArgEndScoper(cur_token())) {
*err_ = Err(open_paren_token, "Expecting \")\" for \"if\" condition",
"You didn't finish the thought you started here.");
return scoped_ptr<ConditionNode>();
}
cur_++; // Skip over )
// Contents of {}.
cond->set_if_true(ParseBlock(true).Pass());
if (has_error())
return scoped_ptr<ConditionNode>();
// Optional "else" at the end.
if (!at_end() && cur_token().IsIdentifierEqualTo("else")) {
cur_++;
// The else may be followed by an if or a block.
if (at_end()) {
*err_ = MakeEOFError("Ran into end of file after \"else\".",
"else, WHAT?!?!?");
return scoped_ptr<ConditionNode>();
}
if (cur_token().IsIdentifierEqualTo("if")) {
// "else if() {"
cond->set_if_false(ParseCondition().PassAs<ParseNode>());
} else if (IsScopeBeginScoper(cur_token())) {
// "else {"
cond->set_if_false(ParseBlock(true).PassAs<ParseNode>());
} else {
// else <anything else>
*err_ = Err(cur_token(), "Expected \"if\" or \"{\" after \"else\".",
"This is neither of those things.");
return scoped_ptr<ConditionNode>();
}
}
if (has_error())
return scoped_ptr<ConditionNode>();
return cond.Pass();
}
// expression := paren_expression | accessor | identifier | literal |
// funccall | unary_expression | binary_expression
//
// accessor := identifier <non-newline-whitespace>* "[" expression "]"
//
// The "non-newline-whitespace is used to differentiate between this case:
// a[1]
// and this one:
// a
// [1]
// The second one is kind of stupid (since it does nothing with the values)
// but is still legal.
scoped_ptr<ParseNode> Parser::ParseExpression() {
scoped_ptr<ParseNode> expr = ParseExpressionExceptBinaryOperators();
if (has_error())
return scoped_ptr<ParseNode>();
// That may have hit EOF, in which case we can't have any binary operators.
if (at_end())
return expr.Pass();
// TODO(brettw) handle operator precidence!
// Gobble up all subsequent expressions as long as there are binary
// operators.
if (IsBinaryOperator(cur_token())) {
scoped_ptr<BinaryOpNode> binary_op(new BinaryOpNode);
binary_op->set_left(expr.Pass());
const Token& operator_token = cur_token();
binary_op->set_op(operator_token);
cur_++;
if (at_end()) {
*err_ = Err(operator_token, "Unexpected EOF in expression.",
"I was looking for the right-hand-side of this operator.");
return scoped_ptr<ParseNode>();
}
binary_op->set_right(ParseExpression().Pass());
if (has_error())
return scoped_ptr<ParseNode>();
return binary_op.PassAs<ParseNode>();
}
return expr.Pass();
}
// This internal one does not handle binary operators, since it requires
// looking at the "next" thing. The regular ParseExpression above handles it.
scoped_ptr<ParseNode> Parser::ParseExpressionExceptBinaryOperators() {
if (at_end())
return scoped_ptr<ParseNode>();
const Token& token = cur_token();
// Unary expression.
if (IsUnaryOperator(token))
return ParseUnaryOp().PassAs<ParseNode>();
// Parenthesized expressions.
if (token.IsScoperEqualTo("("))
return ParseParenExpression();
// Function calls.
if (token.type() == Token::IDENTIFIER) {
if (has_next_token() && IsFunctionCallArgBeginScoper(next_token()))
return ParseFunctionCall().PassAs<ParseNode>();
}
// Lists.
if (token.IsScoperEqualTo("[")) {
return ParseList(Token(Location(), Token::SCOPER, "["),
Token(Location(), Token::SCOPER, "]")).PassAs<ParseNode>();
}
// Literals.
if (token.type() == Token::STRING || token.type() == Token::INTEGER) {
cur_++;
return scoped_ptr<ParseNode>(new LiteralNode(token));
}
// Accessors.
if (token.type() == Token::IDENTIFIER &&
has_next_token() && next_token().IsScoperEqualTo("[") &&
IsSameLine(token, next_token())) {
return ParseAccessor().PassAs<ParseNode>();
}
// Identifiers.
if (token.type() == Token::IDENTIFIER) {
cur_++;
return scoped_ptr<ParseNode>(new IdentifierNode(token));
}
// Handle errors.
if (token.type() == Token::SEPARATOR) {
*err_ = Err(token, "Unexpected comma.",
"You can't put a comma here, it must be in list separating "
"complete\nthoughts.");
} else if (IsScopeBeginScoper(token)) {
*err_ = Err(token, "Unexpected token.",
"You can't put a \"{\" scope here, it must be in a block.");
} else {
*err_ = Err(token, "Unexpected token.",
"I was really hoping for something else here and you let me down.");
}
return scoped_ptr<ParseNode>();
}
// function_call := identifier "(" list_contents ")"
// [<non-newline-whitespace>* block]
scoped_ptr<FunctionCallNode> Parser::ParseFunctionCall() {
scoped_ptr<FunctionCallNode> func(new FunctionCallNode);
const Token& function_token = cur_token();
func->set_function(function_token);
// This function should only get called when we know we have a function,
// which only happens when there is a paren following the name. Skip past it.
DCHECK(has_next_token());
cur_++; // Skip past function name to (.
const Token& open_paren_token = cur_token();
DCHECK(IsFunctionCallArgBeginScoper(open_paren_token));
if (at_end()) {
*err_ = Err(open_paren_token, "Unexpected EOF for function call.",
"You didn't finish the thought you started here.");
return scoped_ptr<FunctionCallNode>();
}
// Arguments.
func->set_args(ParseList(Token(Location(), Token::SCOPER, "("),
Token(Location(), Token::SCOPER, ")")));
if (has_error())
return scoped_ptr<FunctionCallNode>();
// Optional {} after function call for certain functions. The "{" must be on
// the same line as the ")" to disambiguate the case of a function followed
// by a random block just used for scoping purposes.
if (!at_end() && IsScopeBeginScoper(cur_token())) {
const Token& args_end_token = tokens_[cur_ - 1];
DCHECK(args_end_token.IsScoperEqualTo(")"));
if (IsSameLine(args_end_token, cur_token()))
func->set_block(ParseBlock(true).Pass());
}
if (has_error())
return scoped_ptr<FunctionCallNode>();
return func.Pass();
}
// list := "[" expression* "]"
// list_contents := [(expression ",")* expression [","]]
//
// The list_contents is also used in function calls surrounded by parens, so
// this function takes the tokens that are expected to surround the list.
scoped_ptr<ListNode> Parser::ParseList(const Token& expected_begin,
const Token& expected_end) {
scoped_ptr<ListNode> list(new ListNode);
const Token& open_bracket_token = cur_token();
list->set_begin_token(open_bracket_token);
cur_++; // Skip "[" or "(".
bool need_separator = false;
while(true) {
if (at_end()) {
*err_ = Err(open_bracket_token, "EOF found when parsing list.",
"I expected a \"" + expected_end.value().as_string() +
"\" corresponding to this one.");
return scoped_ptr<ListNode>();
}
if (cur_token().type() == expected_end.type() &&
cur_token().value() == expected_end.value()) {
list->set_end_token(cur_token());
cur_++;
break;
}
if (need_separator) {
DCHECK(!list->contents().empty());
LocationRange prev_item_range =
list->contents().at(list->contents().size() - 1)->GetRange();
*err_ = Err(prev_item_range.end(),
"Need comma separating items in list.",
"You probably need a comma after this thingy.");
err_->AppendRange(prev_item_range);
return scoped_ptr<ListNode>();
}
scoped_ptr<ParseNode> expr = ParseExpression().Pass();
if (has_error())
return scoped_ptr<ListNode>();
list->append_item(expr.Pass());
need_separator = true;
if (!at_end()) {
// Skip over the separator, marking that we found it.
if (cur_token().type() == Token::SEPARATOR) {
cur_++;
need_separator = false;
}
}
}
return list.Pass();
}
// paren_expression := "(" expression ")"
scoped_ptr<ParseNode> Parser::ParseParenExpression() {
const Token& open_paren_token = cur_token();
cur_++; // Skip over (
scoped_ptr<ParseNode> ret = ParseExpression();
if (has_error())
return scoped_ptr<ParseNode>();
if (at_end()) {
*err_ = Err(open_paren_token, "EOF found when parsing expression.",
"I was looking for a \")\" corresponding to this one.");
return scoped_ptr<ParseNode>();
}
if (!cur_token().IsScoperEqualTo(")")) {
*err_ = Err(open_paren_token, "Expected \")\" for expression",
"I was looking for a \")\" corresponding to this one.");
return scoped_ptr<ParseNode>();
}
cur_++; // Skip over )
return ret.Pass();
}
// unary_expression := "!" expression
scoped_ptr<UnaryOpNode> Parser::ParseUnaryOp() {
scoped_ptr<UnaryOpNode> unary(new UnaryOpNode);
DCHECK(!at_end() && IsUnaryOperator(cur_token()));
const Token& op_token = cur_token();
unary->set_op(op_token);
cur_++;
if (at_end()) {
*err_ = Err(op_token, "Expected expression.",
"This operator needs something to operate on.");
return scoped_ptr<UnaryOpNode>();
}
unary->set_operand(ParseExpression().Pass());
if (has_error())
return scoped_ptr<UnaryOpNode>();
return unary.Pass();
}
Err Parser::MakeEOFError(const std::string& message,
const std::string& help) const {
if (tokens_.empty())
return Err(Location(NULL, 1, 1), message, help);
const Token& last = tokens_[tokens_.size() - 1];
return Err(last, message, help);
}