2105 lines
69 KiB
C++
2105 lines
69 KiB
C++
// Copyright 2013 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <vector>
|
|
|
|
#include "base/bind.h"
|
|
#include "base/bind_helpers.h"
|
|
#include "base/compiler_specific.h"
|
|
#include "base/logging.h"
|
|
#include "base/memory/ref_counted.h"
|
|
#include "base/message_loop/message_loop.h"
|
|
#include "base/message_loop/message_loop_proxy_impl.h"
|
|
#include "base/pending_task.h"
|
|
#include "base/posix/eintr_wrapper.h"
|
|
#include "base/run_loop.h"
|
|
#include "base/synchronization/waitable_event.h"
|
|
#include "base/thread_task_runner_handle.h"
|
|
#include "base/threading/platform_thread.h"
|
|
#include "base/threading/thread.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
#if defined(OS_WIN)
|
|
#include "base/message_loop/message_pump_win.h"
|
|
#include "base/win/scoped_handle.h"
|
|
#endif
|
|
|
|
namespace base {
|
|
|
|
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
|
|
// to avoid chopping this file up with so many #ifdefs.
|
|
|
|
namespace {
|
|
|
|
class Foo : public RefCounted<Foo> {
|
|
public:
|
|
Foo() : test_count_(0) {
|
|
}
|
|
|
|
void Test0() {
|
|
++test_count_;
|
|
}
|
|
|
|
void Test1ConstRef(const std::string& a) {
|
|
++test_count_;
|
|
result_.append(a);
|
|
}
|
|
|
|
void Test1Ptr(std::string* a) {
|
|
++test_count_;
|
|
result_.append(*a);
|
|
}
|
|
|
|
void Test1Int(int a) {
|
|
test_count_ += a;
|
|
}
|
|
|
|
void Test2Ptr(std::string* a, std::string* b) {
|
|
++test_count_;
|
|
result_.append(*a);
|
|
result_.append(*b);
|
|
}
|
|
|
|
void Test2Mixed(const std::string& a, std::string* b) {
|
|
++test_count_;
|
|
result_.append(a);
|
|
result_.append(*b);
|
|
}
|
|
|
|
int test_count() const { return test_count_; }
|
|
const std::string& result() const { return result_; }
|
|
|
|
private:
|
|
friend class RefCounted<Foo>;
|
|
|
|
~Foo() {}
|
|
|
|
int test_count_;
|
|
std::string result_;
|
|
};
|
|
|
|
void RunTest_PostTask(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Add tests to message loop
|
|
scoped_refptr<Foo> foo(new Foo());
|
|
std::string a("a"), b("b"), c("c"), d("d");
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test0, foo.get()));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1ConstRef, foo.get(), a));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1Ptr, foo.get(), &b));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1Int, foo.get(), 100));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test2Ptr, foo.get(), &a, &c));
|
|
|
|
// TryPost with no contention. It must succeed.
|
|
EXPECT_TRUE(MessageLoop::current()->TryPostTask(FROM_HERE, Bind(
|
|
&Foo::Test2Mixed, foo.get(), a, &d)));
|
|
|
|
// TryPost with simulated contention. It must fail. We wait for a helper
|
|
// thread to lock the queue, we TryPost on this thread and finally we
|
|
// signal the helper to unlock and exit.
|
|
WaitableEvent wait(true, false);
|
|
WaitableEvent signal(true, false);
|
|
Thread thread("RunTest_PostTask_helper");
|
|
thread.Start();
|
|
thread.message_loop()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&MessageLoop::LockWaitUnLockForTesting,
|
|
base::Unretained(MessageLoop::current()),
|
|
&wait,
|
|
&signal));
|
|
|
|
wait.Wait();
|
|
EXPECT_FALSE(MessageLoop::current()->TryPostTask(FROM_HERE, Bind(
|
|
&Foo::Test2Mixed, foo.get(), a, &d)));
|
|
signal.Signal();
|
|
|
|
// After all tests, post a message that will shut down the message loop
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&MessageLoop::Quit, Unretained(MessageLoop::current())));
|
|
|
|
// Now kick things off
|
|
MessageLoop::current()->Run();
|
|
|
|
EXPECT_EQ(foo->test_count(), 105);
|
|
EXPECT_EQ(foo->result(), "abacad");
|
|
}
|
|
|
|
void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Add tests to message loop
|
|
scoped_refptr<Foo> foo(new Foo());
|
|
std::string a("a"), b("b"), c("c"), d("d");
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test0, foo.get()));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1ConstRef, foo.get(), a));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1Ptr, foo.get(), &b));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1Int, foo.get(), 100));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test2Ptr, foo.get(), &a, &c));
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test2Mixed, foo.get(), a, &d));
|
|
|
|
// After all tests, post a message that will shut down the message loop
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&MessageLoop::Quit, Unretained(MessageLoop::current())));
|
|
|
|
// Now kick things off with the SEH block active.
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
EXPECT_EQ(foo->test_count(), 105);
|
|
EXPECT_EQ(foo->result(), "abacad");
|
|
}
|
|
|
|
// This function runs slowly to simulate a large amount of work being done.
|
|
static void SlowFunc(TimeDelta pause, int* quit_counter) {
|
|
PlatformThread::Sleep(pause);
|
|
if (--(*quit_counter) == 0)
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
|
|
// This function records the time when Run was called in a Time object, which is
|
|
// useful for building a variety of MessageLoop tests.
|
|
static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
|
|
*run_time = Time::Now();
|
|
|
|
// Cause our Run function to take some time to execute. As a result we can
|
|
// count on subsequent RecordRunTimeFunc()s running at a future time,
|
|
// without worry about the resolution of our system clock being an issue.
|
|
SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that PostDelayedTask results in a delayed task.
|
|
|
|
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
|
|
|
|
int num_tasks = 1;
|
|
Time run_time;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
|
|
kDelay);
|
|
|
|
Time time_before_run = Time::Now();
|
|
loop.Run();
|
|
Time time_after_run = Time::Now();
|
|
|
|
EXPECT_EQ(0, num_tasks);
|
|
EXPECT_LT(kDelay, time_after_run - time_before_run);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InDelayOrder(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that two tasks with different delays run in the right order.
|
|
int num_tasks = 2;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
|
|
TimeDelta::FromMilliseconds(200));
|
|
// If we get a large pause in execution (due to a context switch) here, this
|
|
// test could fail.
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
|
|
TimeDelta::FromMilliseconds(10));
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time2 < run_time1);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that two tasks with the same delay run in the order in which they
|
|
// were posted.
|
|
//
|
|
// NOTE: This is actually an approximate test since the API only takes a
|
|
// "delay" parameter, so we are not exactly simulating two tasks that get
|
|
// posted at the exact same time. It would be nice if the API allowed us to
|
|
// specify the desired run time.
|
|
|
|
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
|
|
|
|
int num_tasks = 2;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay);
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay);
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time1 < run_time2);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder_2(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that a delayed task still runs after a normal tasks even if the
|
|
// normal tasks take a long time to run.
|
|
|
|
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
|
|
|
|
int num_tasks = 2;
|
|
Time run_time;
|
|
|
|
loop.PostTask(FROM_HERE, Bind(&SlowFunc, kPause, &num_tasks));
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
|
|
TimeDelta::FromMilliseconds(10));
|
|
|
|
Time time_before_run = Time::Now();
|
|
loop.Run();
|
|
Time time_after_run = Time::Now();
|
|
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_LT(kPause, time_after_run - time_before_run);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder_3(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that a delayed task still runs after a pile of normal tasks. The key
|
|
// difference between this test and the previous one is that here we return
|
|
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
|
|
// to maybe run the delayed task. It should know not to do so until the
|
|
// delayed task's delay has passed.
|
|
|
|
int num_tasks = 11;
|
|
Time run_time1, run_time2;
|
|
|
|
// Clutter the ML with tasks.
|
|
for (int i = 1; i < num_tasks; ++i)
|
|
loop.PostTask(FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time1, &num_tasks));
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
|
|
TimeDelta::FromMilliseconds(1));
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time2 > run_time1);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_SharedTimer(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that the interval of the timer, used to run the next delayed task, is
|
|
// set to a value corresponding to when the next delayed task should run.
|
|
|
|
// By setting num_tasks to 1, we ensure that the first task to run causes the
|
|
// run loop to exit.
|
|
int num_tasks = 1;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
|
|
TimeDelta::FromSeconds(1000));
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
|
|
TimeDelta::FromMilliseconds(10));
|
|
|
|
Time start_time = Time::Now();
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
// Ensure that we ran in far less time than the slower timer.
|
|
TimeDelta total_time = Time::Now() - start_time;
|
|
EXPECT_GT(5000, total_time.InMilliseconds());
|
|
|
|
// In case both timers somehow run at nearly the same time, sleep a little
|
|
// and then run all pending to force them both to have run. This is just
|
|
// encouraging flakiness if there is any.
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
|
|
RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(run_time1.is_null());
|
|
EXPECT_FALSE(run_time2.is_null());
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
void SubPumpFunc() {
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MSG msg;
|
|
while (GetMessage(&msg, NULL, 0, 0)) {
|
|
TranslateMessage(&msg);
|
|
DispatchMessage(&msg);
|
|
}
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_SharedTimer_SubPump() {
|
|
MessageLoop loop(MessageLoop::TYPE_UI);
|
|
|
|
// Test that the interval of the timer, used to run the next delayed task, is
|
|
// set to a value corresponding to when the next delayed task should run.
|
|
|
|
// By setting num_tasks to 1, we ensure that the first task to run causes the
|
|
// run loop to exit.
|
|
int num_tasks = 1;
|
|
Time run_time;
|
|
|
|
loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
|
|
|
|
// This very delayed task should never run.
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
|
|
TimeDelta::FromSeconds(1000));
|
|
|
|
// This slightly delayed task should run from within SubPumpFunc).
|
|
loop.PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&PostQuitMessage, 0),
|
|
TimeDelta::FromMilliseconds(10));
|
|
|
|
Time start_time = Time::Now();
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(1, num_tasks);
|
|
|
|
// Ensure that we ran in far less time than the slower timer.
|
|
TimeDelta total_time = Time::Now() - start_time;
|
|
EXPECT_GT(5000, total_time.InMilliseconds());
|
|
|
|
// In case both timers somehow run at nearly the same time, sleep a little
|
|
// and then run all pending to force them both to have run. This is just
|
|
// encouraging flakiness if there is any.
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
|
|
RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(run_time.is_null());
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
// This is used to inject a test point for recording the destructor calls for
|
|
// Closure objects send to MessageLoop::PostTask(). It is awkward usage since we
|
|
// are trying to hook the actual destruction, which is not a common operation.
|
|
class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> {
|
|
public:
|
|
RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted)
|
|
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
|
|
}
|
|
void Run() {}
|
|
|
|
private:
|
|
friend class RefCounted<RecordDeletionProbe>;
|
|
|
|
~RecordDeletionProbe() {
|
|
*was_deleted_ = true;
|
|
if (post_on_delete_.get())
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&RecordDeletionProbe::Run, post_on_delete_.get()));
|
|
}
|
|
|
|
scoped_refptr<RecordDeletionProbe> post_on_delete_;
|
|
bool* was_deleted_;
|
|
};
|
|
|
|
void RunTest_EnsureDeletion(MessageLoop::Type message_loop_type) {
|
|
bool a_was_deleted = false;
|
|
bool b_was_deleted = false;
|
|
{
|
|
MessageLoop loop(message_loop_type);
|
|
loop.PostTask(
|
|
FROM_HERE, Bind(&RecordDeletionProbe::Run,
|
|
new RecordDeletionProbe(NULL, &a_was_deleted)));
|
|
// TODO(ajwong): Do we really need 1000ms here?
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, Bind(&RecordDeletionProbe::Run,
|
|
new RecordDeletionProbe(NULL, &b_was_deleted)),
|
|
TimeDelta::FromMilliseconds(1000));
|
|
}
|
|
EXPECT_TRUE(a_was_deleted);
|
|
EXPECT_TRUE(b_was_deleted);
|
|
}
|
|
|
|
void RunTest_EnsureDeletion_Chain(MessageLoop::Type message_loop_type) {
|
|
bool a_was_deleted = false;
|
|
bool b_was_deleted = false;
|
|
bool c_was_deleted = false;
|
|
{
|
|
MessageLoop loop(message_loop_type);
|
|
// The scoped_refptr for each of the below is held either by the chained
|
|
// RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback.
|
|
RecordDeletionProbe* a = new RecordDeletionProbe(NULL, &a_was_deleted);
|
|
RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted);
|
|
RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted);
|
|
loop.PostTask(FROM_HERE, Bind(&RecordDeletionProbe::Run, c));
|
|
}
|
|
EXPECT_TRUE(a_was_deleted);
|
|
EXPECT_TRUE(b_was_deleted);
|
|
EXPECT_TRUE(c_was_deleted);
|
|
}
|
|
|
|
void NestingFunc(int* depth) {
|
|
if (*depth > 0) {
|
|
*depth -= 1;
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&NestingFunc, depth));
|
|
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageLoop::current()->Run();
|
|
}
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
|
|
ADD_FAILURE() << "bad exception handler";
|
|
::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
|
|
return EXCEPTION_EXECUTE_HANDLER;
|
|
}
|
|
|
|
// This task throws an SEH exception: initially write to an invalid address.
|
|
// If the right SEH filter is installed, it will fix the error.
|
|
class Crasher : public RefCounted<Crasher> {
|
|
public:
|
|
// Ctor. If trash_SEH_handler is true, the task will override the unhandled
|
|
// exception handler with one sure to crash this test.
|
|
explicit Crasher(bool trash_SEH_handler)
|
|
: trash_SEH_handler_(trash_SEH_handler) {
|
|
}
|
|
|
|
void Run() {
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(1));
|
|
if (trash_SEH_handler_)
|
|
::SetUnhandledExceptionFilter(&BadExceptionHandler);
|
|
// Generate a SEH fault. We do it in asm to make sure we know how to undo
|
|
// the damage.
|
|
|
|
#if defined(_M_IX86)
|
|
|
|
__asm {
|
|
mov eax, dword ptr [Crasher::bad_array_]
|
|
mov byte ptr [eax], 66
|
|
}
|
|
|
|
#elif defined(_M_X64)
|
|
|
|
bad_array_[0] = 66;
|
|
|
|
#else
|
|
#error "needs architecture support"
|
|
#endif
|
|
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
// Points the bad array to a valid memory location.
|
|
static void FixError() {
|
|
bad_array_ = &valid_store_;
|
|
}
|
|
|
|
private:
|
|
bool trash_SEH_handler_;
|
|
static volatile char* bad_array_;
|
|
static char valid_store_;
|
|
};
|
|
|
|
volatile char* Crasher::bad_array_ = 0;
|
|
char Crasher::valid_store_ = 0;
|
|
|
|
// This SEH filter fixes the problem and retries execution. Fixing requires
|
|
// that the last instruction: mov eax, [Crasher::bad_array_] to be retried
|
|
// so we move the instruction pointer 5 bytes back.
|
|
LONG WINAPI HandleCrasherException(EXCEPTION_POINTERS *ex_info) {
|
|
if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
|
|
return EXCEPTION_EXECUTE_HANDLER;
|
|
|
|
Crasher::FixError();
|
|
|
|
#if defined(_M_IX86)
|
|
|
|
ex_info->ContextRecord->Eip -= 5;
|
|
|
|
#elif defined(_M_X64)
|
|
|
|
ex_info->ContextRecord->Rip -= 5;
|
|
|
|
#endif
|
|
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
void RunTest_Crasher(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
if (::IsDebuggerPresent())
|
|
return;
|
|
|
|
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
|
|
::SetUnhandledExceptionFilter(&HandleCrasherException);
|
|
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&Crasher::Run, new Crasher(false)));
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
::SetUnhandledExceptionFilter(old_SEH_filter);
|
|
}
|
|
|
|
void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
if (::IsDebuggerPresent())
|
|
return;
|
|
|
|
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
|
|
::SetUnhandledExceptionFilter(&HandleCrasherException);
|
|
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&Crasher::Run, new Crasher(true)));
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
::SetUnhandledExceptionFilter(old_SEH_filter);
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void RunTest_Nesting(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
int depth = 100;
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&NestingFunc, &depth));
|
|
MessageLoop::current()->Run();
|
|
EXPECT_EQ(depth, 0);
|
|
}
|
|
|
|
const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
|
|
|
|
enum TaskType {
|
|
MESSAGEBOX,
|
|
ENDDIALOG,
|
|
RECURSIVE,
|
|
TIMEDMESSAGELOOP,
|
|
QUITMESSAGELOOP,
|
|
ORDERED,
|
|
PUMPS,
|
|
SLEEP,
|
|
RUNS,
|
|
};
|
|
|
|
// Saves the order in which the tasks executed.
|
|
struct TaskItem {
|
|
TaskItem(TaskType t, int c, bool s)
|
|
: type(t),
|
|
cookie(c),
|
|
start(s) {
|
|
}
|
|
|
|
TaskType type;
|
|
int cookie;
|
|
bool start;
|
|
|
|
bool operator == (const TaskItem& other) const {
|
|
return type == other.type && cookie == other.cookie && start == other.start;
|
|
}
|
|
};
|
|
|
|
std::ostream& operator <<(std::ostream& os, TaskType type) {
|
|
switch (type) {
|
|
case MESSAGEBOX: os << "MESSAGEBOX"; break;
|
|
case ENDDIALOG: os << "ENDDIALOG"; break;
|
|
case RECURSIVE: os << "RECURSIVE"; break;
|
|
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
|
|
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
|
|
case ORDERED: os << "ORDERED"; break;
|
|
case PUMPS: os << "PUMPS"; break;
|
|
case SLEEP: os << "SLEEP"; break;
|
|
default:
|
|
NOTREACHED();
|
|
os << "Unknown TaskType";
|
|
break;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
|
|
if (item.start)
|
|
return os << item.type << " " << item.cookie << " starts";
|
|
else
|
|
return os << item.type << " " << item.cookie << " ends";
|
|
}
|
|
|
|
class TaskList {
|
|
public:
|
|
void RecordStart(TaskType type, int cookie) {
|
|
TaskItem item(type, cookie, true);
|
|
DVLOG(1) << item;
|
|
task_list_.push_back(item);
|
|
}
|
|
|
|
void RecordEnd(TaskType type, int cookie) {
|
|
TaskItem item(type, cookie, false);
|
|
DVLOG(1) << item;
|
|
task_list_.push_back(item);
|
|
}
|
|
|
|
size_t Size() {
|
|
return task_list_.size();
|
|
}
|
|
|
|
TaskItem Get(int n) {
|
|
return task_list_[n];
|
|
}
|
|
|
|
private:
|
|
std::vector<TaskItem> task_list_;
|
|
};
|
|
|
|
// Saves the order the tasks ran.
|
|
void OrderedFunc(TaskList* order, int cookie) {
|
|
order->RecordStart(ORDERED, cookie);
|
|
order->RecordEnd(ORDERED, cookie);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
|
|
// common controls (like OpenFile) and StartDoc printing function can cause
|
|
// implicit message loops.
|
|
void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
|
|
order->RecordStart(MESSAGEBOX, cookie);
|
|
if (is_reentrant)
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
|
|
order->RecordEnd(MESSAGEBOX, cookie);
|
|
}
|
|
|
|
// Will end the MessageBox.
|
|
void EndDialogFunc(TaskList* order, int cookie) {
|
|
order->RecordStart(ENDDIALOG, cookie);
|
|
HWND window = GetActiveWindow();
|
|
if (window != NULL) {
|
|
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
|
|
// Cheap way to signal that the window wasn't found if RunEnd() isn't
|
|
// called.
|
|
order->RecordEnd(ENDDIALOG, cookie);
|
|
}
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void RecursiveFunc(TaskList* order, int cookie, int depth,
|
|
bool is_reentrant) {
|
|
order->RecordStart(RECURSIVE, cookie);
|
|
if (depth > 0) {
|
|
if (is_reentrant)
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
|
|
}
|
|
order->RecordEnd(RECURSIVE, cookie);
|
|
}
|
|
|
|
void RecursiveSlowFunc(TaskList* order, int cookie, int depth,
|
|
bool is_reentrant) {
|
|
RecursiveFunc(order, cookie, depth, is_reentrant);
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
|
|
}
|
|
|
|
void QuitFunc(TaskList* order, int cookie) {
|
|
order->RecordStart(QUITMESSAGELOOP, cookie);
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
order->RecordEnd(QUITMESSAGELOOP, cookie);
|
|
}
|
|
|
|
void SleepFunc(TaskList* order, int cookie, TimeDelta delay) {
|
|
order->RecordStart(SLEEP, cookie);
|
|
PlatformThread::Sleep(delay);
|
|
order->RecordEnd(SLEEP, cookie);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
void RecursiveFuncWin(MessageLoop* target,
|
|
HANDLE event,
|
|
bool expect_window,
|
|
TaskList* order,
|
|
bool is_reentrant) {
|
|
target->PostTask(FROM_HERE,
|
|
Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
|
|
target->PostTask(FROM_HERE,
|
|
Bind(&MessageBoxFunc, order, 2, is_reentrant));
|
|
target->PostTask(FROM_HERE,
|
|
Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
|
|
// The trick here is that for recursive task processing, this task will be
|
|
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
|
|
// without a chance.
|
|
// For non-recursive task processing, this will be executed _after_ the
|
|
// MessageBox will have been dismissed by the code below, where
|
|
// expect_window_ is true.
|
|
target->PostTask(FROM_HERE,
|
|
Bind(&EndDialogFunc, order, 4));
|
|
target->PostTask(FROM_HERE,
|
|
Bind(&QuitFunc, order, 5));
|
|
|
|
// Enforce that every tasks are sent before starting to run the main thread
|
|
// message loop.
|
|
ASSERT_TRUE(SetEvent(event));
|
|
|
|
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
|
|
// you will never realize one MessageBox was shown.
|
|
for (; expect_window;) {
|
|
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
|
|
if (window) {
|
|
// Dismiss it.
|
|
for (;;) {
|
|
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
|
|
if (button != NULL) {
|
|
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
|
|
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
|
|
TaskList order;
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&RecursiveFunc, &order, 1, 2, false));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&RecursiveFunc, &order, 2, 2, false));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&QuitFunc, &order, 3));
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(14U, order.Size());
|
|
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
|
|
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
|
|
}
|
|
|
|
void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
|
|
TaskList order;
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&RecursiveSlowFunc, &order, 1, 2, false));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&RecursiveSlowFunc, &order, 2, 2, false));
|
|
MessageLoop::current()->PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 3),
|
|
TimeDelta::FromMilliseconds(5));
|
|
MessageLoop::current()->PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&QuitFunc, &order, 4),
|
|
TimeDelta::FromMilliseconds(5));
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(16U, order.Size());
|
|
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 3, true));
|
|
EXPECT_EQ(order.Get(7), TaskItem(ORDERED, 3, false));
|
|
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 4, true));
|
|
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 4, false));
|
|
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 2, false));
|
|
}
|
|
|
|
void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&RecursiveFunc, &order, 1, 2, true));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&RecursiveFunc, &order, 2, 2, true));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&QuitFunc, &order, 3));
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(14U, order.Size());
|
|
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
|
|
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
// TODO(darin): These tests need to be ported since they test critical
|
|
// message loop functionality.
|
|
|
|
// A side effect of this test is the generation a beep. Sorry.
|
|
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
Thread worker("RecursiveDenial2_worker");
|
|
Thread::Options options;
|
|
options.message_loop_type = message_loop_type;
|
|
ASSERT_EQ(true, worker.StartWithOptions(options));
|
|
TaskList order;
|
|
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
|
|
worker.message_loop()->PostTask(FROM_HERE,
|
|
Bind(&RecursiveFuncWin,
|
|
MessageLoop::current(),
|
|
event.Get(),
|
|
true,
|
|
&order,
|
|
false));
|
|
// Let the other thread execute.
|
|
WaitForSingleObject(event, INFINITE);
|
|
MessageLoop::current()->Run();
|
|
|
|
ASSERT_EQ(order.Size(), 17);
|
|
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
|
|
EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
|
|
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
|
|
// When EndDialogFunc is processed, the window is already dismissed, hence no
|
|
// "end" entry.
|
|
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
|
|
EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
|
|
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
|
|
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
|
|
}
|
|
|
|
// A side effect of this test is the generation a beep. Sorry. This test also
|
|
// needs to process windows messages on the current thread.
|
|
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
Thread worker("RecursiveSupport2_worker");
|
|
Thread::Options options;
|
|
options.message_loop_type = message_loop_type;
|
|
ASSERT_EQ(true, worker.StartWithOptions(options));
|
|
TaskList order;
|
|
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
|
|
worker.message_loop()->PostTask(FROM_HERE,
|
|
Bind(&RecursiveFuncWin,
|
|
MessageLoop::current(),
|
|
event.Get(),
|
|
false,
|
|
&order,
|
|
true));
|
|
// Let the other thread execute.
|
|
WaitForSingleObject(event, INFINITE);
|
|
MessageLoop::current()->Run();
|
|
|
|
ASSERT_EQ(order.Size(), 18);
|
|
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
|
|
// Note that this executes in the MessageBox modal loop.
|
|
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
|
|
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
|
|
EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
|
|
/* The order can subtly change here. The reason is that when RecursiveFunc(1)
|
|
is called in the main thread, if it is faster than getting to the
|
|
PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
|
|
execution can change. We don't care anyway that the order isn't correct.
|
|
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
|
|
EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
|
|
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
|
|
*/
|
|
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void FuncThatPumps(TaskList* order, int cookie) {
|
|
order->RecordStart(PUMPS, cookie);
|
|
{
|
|
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
|
|
RunLoop().RunUntilIdle();
|
|
}
|
|
order->RecordEnd(PUMPS, cookie);
|
|
}
|
|
|
|
void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) {
|
|
order->RecordStart(RUNS, cookie);
|
|
{
|
|
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
|
|
run_loop->Run();
|
|
}
|
|
order->RecordEnd(RUNS, cookie);
|
|
}
|
|
|
|
void FuncThatQuitsNow() {
|
|
MessageLoop::current()->QuitNow();
|
|
}
|
|
|
|
// Tests that non nestable tasks run in FIFO if there are no nested loops.
|
|
void RunTest_NonNestableWithNoNesting(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
MessageLoop::current()->PostNonNestableTask(
|
|
FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 1));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&QuitFunc, &order, 3));
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(6U, order.Size());
|
|
EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false));
|
|
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
|
|
}
|
|
|
|
// Tests that non nestable tasks don't run when there's code in the call stack.
|
|
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
|
|
bool use_delayed) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&FuncThatPumps, &order, 1));
|
|
if (use_delayed) {
|
|
MessageLoop::current()->PostNonNestableDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 2),
|
|
TimeDelta::FromMilliseconds(1));
|
|
} else {
|
|
MessageLoop::current()->PostNonNestableTask(
|
|
FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 2));
|
|
}
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 3));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50)));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&OrderedFunc, &order, 5));
|
|
if (use_delayed) {
|
|
MessageLoop::current()->PostNonNestableDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&QuitFunc, &order, 6),
|
|
TimeDelta::FromMilliseconds(2));
|
|
} else {
|
|
MessageLoop::current()->PostNonNestableTask(
|
|
FROM_HERE,
|
|
Bind(&QuitFunc, &order, 6));
|
|
}
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(12U, order.Size());
|
|
EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true));
|
|
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true));
|
|
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false));
|
|
EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true));
|
|
EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false));
|
|
EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true));
|
|
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false));
|
|
EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false));
|
|
EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true));
|
|
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false));
|
|
}
|
|
|
|
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
|
|
void RunTest_QuitNow(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop run_loop;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 3));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 4)); // never runs
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
ASSERT_EQ(6U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit works before RunWithID.
|
|
void RunTest_RunLoopQuitOrderBefore(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop run_loop;
|
|
|
|
run_loop.Quit();
|
|
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 1)); // never runs
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs
|
|
|
|
run_loop.Run();
|
|
|
|
ASSERT_EQ(0U, order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit works during RunWithID.
|
|
void RunTest_RunLoopQuitOrderDuring(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop run_loop;
|
|
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 1));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2)); // never runs
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow)); // never runs
|
|
|
|
run_loop.Run();
|
|
|
|
ASSERT_EQ(2U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit works after RunWithID.
|
|
void RunTest_RunLoopQuitOrderAfter(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop run_loop;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 3));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, run_loop.QuitClosure()); // has no affect
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 4));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&FuncThatQuitsNow));
|
|
|
|
RunLoop outer_run_loop;
|
|
outer_run_loop.Run();
|
|
|
|
ASSERT_EQ(8U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
|
|
void RunTest_RunLoopQuitTop(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop outer_run_loop;
|
|
RunLoop nested_run_loop;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, outer_run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_run_loop.QuitClosure());
|
|
|
|
outer_run_loop.Run();
|
|
|
|
ASSERT_EQ(4U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
|
|
void RunTest_RunLoopQuitNested(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop outer_run_loop;
|
|
RunLoop nested_run_loop;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, outer_run_loop.QuitClosure());
|
|
|
|
outer_run_loop.Run();
|
|
|
|
ASSERT_EQ(4U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
|
|
void RunTest_RunLoopQuitBogus(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop outer_run_loop;
|
|
RunLoop nested_run_loop;
|
|
RunLoop bogus_run_loop;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, bogus_run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 2));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, outer_run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_run_loop.QuitClosure());
|
|
|
|
outer_run_loop.Run();
|
|
|
|
ASSERT_EQ(4U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
|
|
void RunTest_RunLoopQuitDeep(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
RunLoop outer_run_loop;
|
|
RunLoop nested_loop1;
|
|
RunLoop nested_loop2;
|
|
RunLoop nested_loop3;
|
|
RunLoop nested_loop4;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 1, Unretained(&nested_loop1)));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 2, Unretained(&nested_loop2)));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 3, Unretained(&nested_loop3)));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
Bind(&FuncThatRuns, &order, 4, Unretained(&nested_loop4)));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 5));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, outer_run_loop.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 6));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_loop1.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 7));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_loop2.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 8));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_loop3.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 9));
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, nested_loop4.QuitClosure());
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE, Bind(&OrderedFunc, &order, 10));
|
|
|
|
outer_run_loop.Run();
|
|
|
|
ASSERT_EQ(18U, order.Size());
|
|
int task_index = 0;
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false));
|
|
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
|
|
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
|
|
}
|
|
|
|
void PostNTasksThenQuit(int posts_remaining) {
|
|
if (posts_remaining > 1) {
|
|
MessageLoop::current()->PostTask(
|
|
FROM_HERE,
|
|
Bind(&PostNTasksThenQuit, posts_remaining - 1));
|
|
} else {
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
}
|
|
|
|
void RunTest_RecursivePosts(MessageLoop::Type message_loop_type,
|
|
int num_times) {
|
|
MessageLoop loop(message_loop_type);
|
|
loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, num_times));
|
|
loop.Run();
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
class DispatcherImpl : public MessageLoopForUI::Dispatcher {
|
|
public:
|
|
DispatcherImpl() : dispatch_count_(0) {}
|
|
|
|
virtual bool Dispatch(const NativeEvent& msg) OVERRIDE {
|
|
::TranslateMessage(&msg);
|
|
::DispatchMessage(&msg);
|
|
// Do not count WM_TIMER since it is not what we post and it will cause
|
|
// flakiness.
|
|
if (msg.message != WM_TIMER)
|
|
++dispatch_count_;
|
|
// We treat WM_LBUTTONUP as the last message.
|
|
return msg.message != WM_LBUTTONUP;
|
|
}
|
|
|
|
int dispatch_count_;
|
|
};
|
|
|
|
void MouseDownUp() {
|
|
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
|
|
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
|
|
}
|
|
|
|
void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
MessageLoop::current()->PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&MouseDownUp),
|
|
TimeDelta::FromMilliseconds(100));
|
|
DispatcherImpl dispatcher;
|
|
RunLoop run_loop(&dispatcher);
|
|
run_loop.Run();
|
|
ASSERT_EQ(2, dispatcher.dispatch_count_);
|
|
}
|
|
|
|
LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
|
|
if (code == MessagePumpForUI::kMessageFilterCode) {
|
|
MSG* msg = reinterpret_cast<MSG*>(lparam);
|
|
if (msg->message == WM_LBUTTONDOWN)
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
MessageLoop::current()->PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&MouseDownUp),
|
|
TimeDelta::FromMilliseconds(100));
|
|
HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
|
|
MsgFilterProc,
|
|
NULL,
|
|
GetCurrentThreadId());
|
|
DispatcherImpl dispatcher;
|
|
RunLoop run_loop(&dispatcher);
|
|
run_loop.Run();
|
|
ASSERT_EQ(1, dispatcher.dispatch_count_);
|
|
UnhookWindowsHookEx(msg_hook);
|
|
}
|
|
|
|
class TestIOHandler : public MessageLoopForIO::IOHandler {
|
|
public:
|
|
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
|
|
|
|
virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
|
|
DWORD bytes_transfered, DWORD error);
|
|
|
|
void Init();
|
|
void WaitForIO();
|
|
OVERLAPPED* context() { return &context_.overlapped; }
|
|
DWORD size() { return sizeof(buffer_); }
|
|
|
|
private:
|
|
char buffer_[48];
|
|
MessageLoopForIO::IOContext context_;
|
|
HANDLE signal_;
|
|
win::ScopedHandle file_;
|
|
bool wait_;
|
|
};
|
|
|
|
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
|
|
: signal_(signal), wait_(wait) {
|
|
memset(buffer_, 0, sizeof(buffer_));
|
|
memset(&context_, 0, sizeof(context_));
|
|
context_.handler = this;
|
|
|
|
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
|
|
FILE_FLAG_OVERLAPPED, NULL));
|
|
EXPECT_TRUE(file_.IsValid());
|
|
}
|
|
|
|
void TestIOHandler::Init() {
|
|
MessageLoopForIO::current()->RegisterIOHandler(file_, this);
|
|
|
|
DWORD read;
|
|
EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
|
|
EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
|
|
if (wait_)
|
|
WaitForIO();
|
|
}
|
|
|
|
void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
|
|
DWORD bytes_transfered, DWORD error) {
|
|
ASSERT_TRUE(context == &context_);
|
|
ASSERT_TRUE(SetEvent(signal_));
|
|
}
|
|
|
|
void TestIOHandler::WaitForIO() {
|
|
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
|
|
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
|
|
}
|
|
|
|
void RunTest_IOHandler() {
|
|
win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
ASSERT_TRUE(callback_called.IsValid());
|
|
|
|
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
|
|
win::ScopedHandle server(
|
|
CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
|
|
ASSERT_TRUE(server.IsValid());
|
|
|
|
Thread thread("IOHandler test");
|
|
Thread::Options options;
|
|
options.message_loop_type = MessageLoop::TYPE_IO;
|
|
ASSERT_TRUE(thread.StartWithOptions(options));
|
|
|
|
MessageLoop* thread_loop = thread.message_loop();
|
|
ASSERT_TRUE(NULL != thread_loop);
|
|
|
|
TestIOHandler handler(kPipeName, callback_called, false);
|
|
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
|
|
Unretained(&handler)));
|
|
// Make sure the thread runs and sleeps for lack of work.
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
|
|
|
|
const char buffer[] = "Hello there!";
|
|
DWORD written;
|
|
EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
|
|
|
|
DWORD result = WaitForSingleObject(callback_called, 1000);
|
|
EXPECT_EQ(WAIT_OBJECT_0, result);
|
|
|
|
thread.Stop();
|
|
}
|
|
|
|
void RunTest_WaitForIO() {
|
|
win::ScopedHandle callback1_called(
|
|
CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
win::ScopedHandle callback2_called(
|
|
CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
ASSERT_TRUE(callback1_called.IsValid());
|
|
ASSERT_TRUE(callback2_called.IsValid());
|
|
|
|
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
|
|
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
|
|
win::ScopedHandle server1(
|
|
CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
|
|
win::ScopedHandle server2(
|
|
CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
|
|
ASSERT_TRUE(server1.IsValid());
|
|
ASSERT_TRUE(server2.IsValid());
|
|
|
|
Thread thread("IOHandler test");
|
|
Thread::Options options;
|
|
options.message_loop_type = MessageLoop::TYPE_IO;
|
|
ASSERT_TRUE(thread.StartWithOptions(options));
|
|
|
|
MessageLoop* thread_loop = thread.message_loop();
|
|
ASSERT_TRUE(NULL != thread_loop);
|
|
|
|
TestIOHandler handler1(kPipeName1, callback1_called, false);
|
|
TestIOHandler handler2(kPipeName2, callback2_called, true);
|
|
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
|
|
Unretained(&handler1)));
|
|
// TODO(ajwong): Do we really need such long Sleeps in ths function?
|
|
// Make sure the thread runs and sleeps for lack of work.
|
|
TimeDelta delay = TimeDelta::FromMilliseconds(100);
|
|
PlatformThread::Sleep(delay);
|
|
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
|
|
Unretained(&handler2)));
|
|
PlatformThread::Sleep(delay);
|
|
|
|
// At this time handler1 is waiting to be called, and the thread is waiting
|
|
// on the Init method of handler2, filtering only handler2 callbacks.
|
|
|
|
const char buffer[] = "Hello there!";
|
|
DWORD written;
|
|
EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
|
|
PlatformThread::Sleep(2 * delay);
|
|
EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
|
|
"handler1 has not been called";
|
|
|
|
EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
|
|
|
|
HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
|
|
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
|
|
EXPECT_EQ(WAIT_OBJECT_0, result);
|
|
|
|
thread.Stop();
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
} // namespace
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Each test is run against each type of MessageLoop. That way we are sure
|
|
// that message loops work properly in all configurations. Of course, in some
|
|
// cases, a unit test may only be for a particular type of loop.
|
|
|
|
TEST(MessageLoopTest, PostTask) {
|
|
RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostTask(MessageLoop::TYPE_UI);
|
|
RunTest_PostTask(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostTask_SEH) {
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_Basic) {
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
|
|
RunTest_PostDelayedTask_SharedTimer_SubPump();
|
|
}
|
|
#endif
|
|
|
|
// TODO(darin): MessageLoop does not support deleting all tasks in the
|
|
// destructor.
|
|
// Fails, http://crbug.com/50272.
|
|
TEST(MessageLoopTest, DISABLED_EnsureDeletion) {
|
|
RunTest_EnsureDeletion(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_EnsureDeletion(MessageLoop::TYPE_UI);
|
|
RunTest_EnsureDeletion(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
// TODO(darin): MessageLoop does not support deleting all tasks in the
|
|
// destructor.
|
|
// Fails, http://crbug.com/50272.
|
|
TEST(MessageLoopTest, DISABLED_EnsureDeletion_Chain) {
|
|
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_UI);
|
|
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, Crasher) {
|
|
RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_Crasher(MessageLoop::TYPE_UI);
|
|
RunTest_Crasher(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, CrasherNasty) {
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_UI);
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_IO);
|
|
}
|
|
#endif // defined(OS_WIN)
|
|
|
|
TEST(MessageLoopTest, Nesting) {
|
|
RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_Nesting(MessageLoop::TYPE_UI);
|
|
RunTest_Nesting(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveDenial1) {
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveDenial3) {
|
|
RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveSupport1) {
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
// This test occasionally hangs http://crbug.com/44567
|
|
TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveSupport2) {
|
|
// This test requires a UI loop
|
|
RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
|
|
}
|
|
#endif // defined(OS_WIN)
|
|
|
|
TEST(MessageLoopTest, NonNestableWithNoNesting) {
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, NonNestableInNestedLoop) {
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
|
|
}
|
|
|
|
TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
|
|
}
|
|
|
|
TEST(MessageLoopTest, QuitNow) {
|
|
RunTest_QuitNow(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_QuitNow(MessageLoop::TYPE_UI);
|
|
RunTest_QuitNow(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitTop) {
|
|
RunTest_RunLoopQuitTop(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitTop(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitTop(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitNested) {
|
|
RunTest_RunLoopQuitNested(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitNested(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitNested(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitBogus) {
|
|
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitDeep) {
|
|
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitOrderBefore) {
|
|
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitOrderDuring) {
|
|
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RunLoopQuitOrderAfter) {
|
|
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_UI);
|
|
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
class DummyTaskObserver : public MessageLoop::TaskObserver {
|
|
public:
|
|
explicit DummyTaskObserver(int num_tasks)
|
|
: num_tasks_started_(0),
|
|
num_tasks_processed_(0),
|
|
num_tasks_(num_tasks) {}
|
|
|
|
virtual ~DummyTaskObserver() {}
|
|
|
|
virtual void WillProcessTask(const PendingTask& pending_task) OVERRIDE {
|
|
num_tasks_started_++;
|
|
EXPECT_TRUE(pending_task.time_posted != TimeTicks());
|
|
EXPECT_LE(num_tasks_started_, num_tasks_);
|
|
EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
|
|
}
|
|
|
|
virtual void DidProcessTask(const PendingTask& pending_task) OVERRIDE {
|
|
num_tasks_processed_++;
|
|
EXPECT_TRUE(pending_task.time_posted != TimeTicks());
|
|
EXPECT_LE(num_tasks_started_, num_tasks_);
|
|
EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
|
|
}
|
|
|
|
int num_tasks_started() const { return num_tasks_started_; }
|
|
int num_tasks_processed() const { return num_tasks_processed_; }
|
|
|
|
private:
|
|
int num_tasks_started_;
|
|
int num_tasks_processed_;
|
|
const int num_tasks_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
|
|
};
|
|
|
|
TEST(MessageLoopTest, TaskObserver) {
|
|
const int kNumPosts = 6;
|
|
DummyTaskObserver observer(kNumPosts);
|
|
|
|
MessageLoop loop;
|
|
loop.AddTaskObserver(&observer);
|
|
loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
|
|
loop.Run();
|
|
loop.RemoveTaskObserver(&observer);
|
|
|
|
EXPECT_EQ(kNumPosts, observer.num_tasks_started());
|
|
EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, Dispatcher) {
|
|
// This test requires a UI loop
|
|
RunTest_Dispatcher(MessageLoop::TYPE_UI);
|
|
}
|
|
|
|
TEST(MessageLoopTest, DispatcherWithMessageHook) {
|
|
// This test requires a UI loop
|
|
RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
|
|
}
|
|
|
|
TEST(MessageLoopTest, IOHandler) {
|
|
RunTest_IOHandler();
|
|
}
|
|
|
|
TEST(MessageLoopTest, WaitForIO) {
|
|
RunTest_WaitForIO();
|
|
}
|
|
|
|
TEST(MessageLoopTest, HighResolutionTimer) {
|
|
MessageLoop loop;
|
|
|
|
const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
|
|
const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
|
|
|
|
EXPECT_FALSE(loop.IsHighResolutionTimerEnabledForTesting());
|
|
|
|
// Post a fast task to enable the high resolution timers.
|
|
loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
|
|
kFastTimer);
|
|
loop.Run();
|
|
EXPECT_TRUE(loop.IsHighResolutionTimerEnabledForTesting());
|
|
|
|
// Post a slow task and verify high resolution timers
|
|
// are still enabled.
|
|
loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
|
|
kSlowTimer);
|
|
loop.Run();
|
|
EXPECT_TRUE(loop.IsHighResolutionTimerEnabledForTesting());
|
|
|
|
// Wait for a while so that high-resolution mode elapses.
|
|
PlatformThread::Sleep(TimeDelta::FromMilliseconds(
|
|
MessageLoop::kHighResolutionTimerModeLeaseTimeMs));
|
|
|
|
// Post a slow task to disable the high resolution timers.
|
|
loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
|
|
kSlowTimer);
|
|
loop.Run();
|
|
EXPECT_FALSE(loop.IsHighResolutionTimerEnabledForTesting());
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
#if defined(OS_POSIX) && !defined(OS_NACL)
|
|
|
|
namespace {
|
|
|
|
class QuitDelegate : public MessageLoopForIO::Watcher {
|
|
public:
|
|
virtual void OnFileCanWriteWithoutBlocking(int fd) OVERRIDE {
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
virtual void OnFileCanReadWithoutBlocking(int fd) OVERRIDE {
|
|
MessageLoop::current()->QuitWhenIdle();
|
|
}
|
|
};
|
|
|
|
TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
|
|
// Simulate a MessageLoop that dies before an FileDescriptorWatcher.
|
|
// This could happen when people use the Singleton pattern or atexit.
|
|
|
|
// Create a file descriptor. Doesn't need to be readable or writable,
|
|
// as we don't need to actually get any notifications.
|
|
// pipe() is just the easiest way to do it.
|
|
int pipefds[2];
|
|
int err = pipe(pipefds);
|
|
ASSERT_EQ(0, err);
|
|
int fd = pipefds[1];
|
|
{
|
|
// Arrange for controller to live longer than message loop.
|
|
MessageLoopForIO::FileDescriptorWatcher controller;
|
|
{
|
|
MessageLoopForIO message_loop;
|
|
|
|
QuitDelegate delegate;
|
|
message_loop.WatchFileDescriptor(fd,
|
|
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
|
|
// and don't run the message loop, just destroy it.
|
|
}
|
|
}
|
|
if (HANDLE_EINTR(close(pipefds[0])) < 0)
|
|
PLOG(ERROR) << "close";
|
|
if (HANDLE_EINTR(close(pipefds[1])) < 0)
|
|
PLOG(ERROR) << "close";
|
|
}
|
|
|
|
TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
|
|
// Verify that it's ok to call StopWatchingFileDescriptor().
|
|
// (Errors only showed up in valgrind.)
|
|
int pipefds[2];
|
|
int err = pipe(pipefds);
|
|
ASSERT_EQ(0, err);
|
|
int fd = pipefds[1];
|
|
{
|
|
// Arrange for message loop to live longer than controller.
|
|
MessageLoopForIO message_loop;
|
|
{
|
|
MessageLoopForIO::FileDescriptorWatcher controller;
|
|
|
|
QuitDelegate delegate;
|
|
message_loop.WatchFileDescriptor(fd,
|
|
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
|
|
controller.StopWatchingFileDescriptor();
|
|
}
|
|
}
|
|
if (HANDLE_EINTR(close(pipefds[0])) < 0)
|
|
PLOG(ERROR) << "close";
|
|
if (HANDLE_EINTR(close(pipefds[1])) < 0)
|
|
PLOG(ERROR) << "close";
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#endif // defined(OS_POSIX) && !defined(OS_NACL)
|
|
|
|
namespace {
|
|
// Inject a test point for recording the destructor calls for Closure objects
|
|
// send to MessageLoop::PostTask(). It is awkward usage since we are trying to
|
|
// hook the actual destruction, which is not a common operation.
|
|
class DestructionObserverProbe :
|
|
public RefCounted<DestructionObserverProbe> {
|
|
public:
|
|
DestructionObserverProbe(bool* task_destroyed,
|
|
bool* destruction_observer_called)
|
|
: task_destroyed_(task_destroyed),
|
|
destruction_observer_called_(destruction_observer_called) {
|
|
}
|
|
virtual void Run() {
|
|
// This task should never run.
|
|
ADD_FAILURE();
|
|
}
|
|
private:
|
|
friend class RefCounted<DestructionObserverProbe>;
|
|
|
|
virtual ~DestructionObserverProbe() {
|
|
EXPECT_FALSE(*destruction_observer_called_);
|
|
*task_destroyed_ = true;
|
|
}
|
|
|
|
bool* task_destroyed_;
|
|
bool* destruction_observer_called_;
|
|
};
|
|
|
|
class MLDestructionObserver : public MessageLoop::DestructionObserver {
|
|
public:
|
|
MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
|
|
: task_destroyed_(task_destroyed),
|
|
destruction_observer_called_(destruction_observer_called),
|
|
task_destroyed_before_message_loop_(false) {
|
|
}
|
|
virtual void WillDestroyCurrentMessageLoop() OVERRIDE {
|
|
task_destroyed_before_message_loop_ = *task_destroyed_;
|
|
*destruction_observer_called_ = true;
|
|
}
|
|
bool task_destroyed_before_message_loop() const {
|
|
return task_destroyed_before_message_loop_;
|
|
}
|
|
private:
|
|
bool* task_destroyed_;
|
|
bool* destruction_observer_called_;
|
|
bool task_destroyed_before_message_loop_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
TEST(MessageLoopTest, DestructionObserverTest) {
|
|
// Verify that the destruction observer gets called at the very end (after
|
|
// all the pending tasks have been destroyed).
|
|
MessageLoop* loop = new MessageLoop;
|
|
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
|
|
|
|
bool task_destroyed = false;
|
|
bool destruction_observer_called = false;
|
|
|
|
MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
|
|
loop->AddDestructionObserver(&observer);
|
|
loop->PostDelayedTask(
|
|
FROM_HERE,
|
|
Bind(&DestructionObserverProbe::Run,
|
|
new DestructionObserverProbe(&task_destroyed,
|
|
&destruction_observer_called)),
|
|
kDelay);
|
|
delete loop;
|
|
EXPECT_TRUE(observer.task_destroyed_before_message_loop());
|
|
// The task should have been destroyed when we deleted the loop.
|
|
EXPECT_TRUE(task_destroyed);
|
|
EXPECT_TRUE(destruction_observer_called);
|
|
}
|
|
|
|
|
|
// Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
|
|
// posts tasks on that message loop.
|
|
TEST(MessageLoopTest, ThreadMainTaskRunner) {
|
|
MessageLoop loop;
|
|
|
|
scoped_refptr<Foo> foo(new Foo());
|
|
std::string a("a");
|
|
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
|
|
&Foo::Test1ConstRef, foo.get(), a));
|
|
|
|
// Post quit task;
|
|
MessageLoop::current()->PostTask(FROM_HERE, Bind(
|
|
&MessageLoop::Quit, Unretained(MessageLoop::current())));
|
|
|
|
// Now kick things off
|
|
MessageLoop::current()->Run();
|
|
|
|
EXPECT_EQ(foo->test_count(), 1);
|
|
EXPECT_EQ(foo->result(), "a");
|
|
}
|
|
|
|
TEST(MessageLoopTest, IsType) {
|
|
MessageLoop loop(MessageLoop::TYPE_UI);
|
|
EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
|
|
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
|
|
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursivePosts) {
|
|
// There was a bug in the MessagePumpGLib where posting tasks recursively
|
|
// caused the message loop to hang, due to the buffer of the internal pipe
|
|
// becoming full. Test all MessageLoop types to ensure this issue does not
|
|
// exist in other MessagePumps.
|
|
|
|
// On Linux, the pipe buffer size is 64KiB by default. The bug caused one
|
|
// byte accumulated in the pipe per two posts, so we should repeat 128K
|
|
// times to reproduce the bug.
|
|
const int kNumTimes = 1 << 17;
|
|
RunTest_RecursivePosts(MessageLoop::TYPE_DEFAULT, kNumTimes);
|
|
RunTest_RecursivePosts(MessageLoop::TYPE_UI, kNumTimes);
|
|
RunTest_RecursivePosts(MessageLoop::TYPE_IO, kNumTimes);
|
|
}
|
|
|
|
} // namespace base
|