397 lines
16 KiB
C++
397 lines
16 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|
|
#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|
|
|
|
#include <windows.h>
|
|
|
|
#include <list>
|
|
|
|
#include "base/base_export.h"
|
|
#include "base/basictypes.h"
|
|
#include "base/memory/scoped_ptr.h"
|
|
#include "base/message_loop/message_pump.h"
|
|
#include "base/message_loop/message_pump_dispatcher.h"
|
|
#include "base/message_loop/message_pump_observer.h"
|
|
#include "base/observer_list.h"
|
|
#include "base/time/time.h"
|
|
#include "base/win/scoped_handle.h"
|
|
|
|
namespace base {
|
|
|
|
// MessagePumpWin serves as the base for specialized versions of the MessagePump
|
|
// for Windows. It provides basic functionality like handling of observers and
|
|
// controlling the lifetime of the message pump.
|
|
class BASE_EXPORT MessagePumpWin : public MessagePump {
|
|
public:
|
|
MessagePumpWin() : have_work_(0), state_(NULL) {}
|
|
virtual ~MessagePumpWin() {}
|
|
|
|
// Add an Observer, which will start receiving notifications immediately.
|
|
void AddObserver(MessagePumpObserver* observer);
|
|
|
|
// Remove an Observer. It is safe to call this method while an Observer is
|
|
// receiving a notification callback.
|
|
void RemoveObserver(MessagePumpObserver* observer);
|
|
|
|
// Give a chance to code processing additional messages to notify the
|
|
// message loop observers that another message has been processed.
|
|
void WillProcessMessage(const MSG& msg);
|
|
void DidProcessMessage(const MSG& msg);
|
|
|
|
// Like MessagePump::Run, but MSG objects are routed through dispatcher.
|
|
void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
|
|
|
|
// MessagePump methods:
|
|
virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
|
|
virtual void Quit();
|
|
|
|
protected:
|
|
struct RunState {
|
|
Delegate* delegate;
|
|
MessagePumpDispatcher* dispatcher;
|
|
|
|
// Used to flag that the current Run() invocation should return ASAP.
|
|
bool should_quit;
|
|
|
|
// Used to count how many Run() invocations are on the stack.
|
|
int run_depth;
|
|
};
|
|
|
|
virtual void DoRunLoop() = 0;
|
|
int GetCurrentDelay() const;
|
|
|
|
ObserverList<MessagePumpObserver> observers_;
|
|
|
|
// The time at which delayed work should run.
|
|
TimeTicks delayed_work_time_;
|
|
|
|
// A boolean value used to indicate if there is a kMsgDoWork message pending
|
|
// in the Windows Message queue. There is at most one such message, and it
|
|
// can drive execution of tasks when a native message pump is running.
|
|
LONG have_work_;
|
|
|
|
// State for the current invocation of Run.
|
|
RunState* state_;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
|
|
// MessageLoop instantiated with TYPE_UI.
|
|
//
|
|
// MessagePumpForUI implements a "traditional" Windows message pump. It contains
|
|
// a nearly infinite loop that peeks out messages, and then dispatches them.
|
|
// Intermixed with those peeks are callouts to DoWork for pending tasks, and
|
|
// DoDelayedWork for pending timers. When there are no events to be serviced,
|
|
// this pump goes into a wait state. In most cases, this message pump handles
|
|
// all processing.
|
|
//
|
|
// However, when a task, or windows event, invokes on the stack a native dialog
|
|
// box or such, that window typically provides a bare bones (native?) message
|
|
// pump. That bare-bones message pump generally supports little more than a
|
|
// peek of the Windows message queue, followed by a dispatch of the peeked
|
|
// message. MessageLoop extends that bare-bones message pump to also service
|
|
// Tasks, at the cost of some complexity.
|
|
//
|
|
// The basic structure of the extension (refered to as a sub-pump) is that a
|
|
// special message, kMsgHaveWork, is repeatedly injected into the Windows
|
|
// Message queue. Each time the kMsgHaveWork message is peeked, checks are
|
|
// made for an extended set of events, including the availability of Tasks to
|
|
// run.
|
|
//
|
|
// After running a task, the special message kMsgHaveWork is again posted to
|
|
// the Windows Message queue, ensuring a future time slice for processing a
|
|
// future event. To prevent flooding the Windows Message queue, care is taken
|
|
// to be sure that at most one kMsgHaveWork message is EVER pending in the
|
|
// Window's Message queue.
|
|
//
|
|
// There are a few additional complexities in this system where, when there are
|
|
// no Tasks to run, this otherwise infinite stream of messages which drives the
|
|
// sub-pump is halted. The pump is automatically re-started when Tasks are
|
|
// queued.
|
|
//
|
|
// A second complexity is that the presence of this stream of posted tasks may
|
|
// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
|
|
// Such paint and timer events always give priority to a posted message, such as
|
|
// kMsgHaveWork messages. As a result, care is taken to do some peeking in
|
|
// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
|
|
// is peeked, and before a replacement kMsgHaveWork is posted).
|
|
//
|
|
// NOTE: Although it may seem odd that messages are used to start and stop this
|
|
// flow (as opposed to signaling objects, etc.), it should be understood that
|
|
// the native message pump will *only* respond to messages. As a result, it is
|
|
// an excellent choice. It is also helpful that the starter messages that are
|
|
// placed in the queue when new task arrive also awakens DoRunLoop.
|
|
//
|
|
class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
|
|
public:
|
|
// A MessageFilter implements the common Peek/Translate/Dispatch code to deal
|
|
// with windows messages.
|
|
// This abstraction is used to inject TSF message peeking. See
|
|
// TextServicesMessageFilter.
|
|
class BASE_EXPORT MessageFilter {
|
|
public:
|
|
virtual ~MessageFilter() {}
|
|
// Implements the functionality exposed by the OS through PeekMessage.
|
|
virtual BOOL DoPeekMessage(MSG* msg,
|
|
HWND window_handle,
|
|
UINT msg_filter_min,
|
|
UINT msg_filter_max,
|
|
UINT remove_msg) {
|
|
return PeekMessage(msg, window_handle, msg_filter_min, msg_filter_max,
|
|
remove_msg);
|
|
}
|
|
// Returns true if |message| was consumed by the filter and no extra
|
|
// processing is required. If this method returns false, it is the
|
|
// responsibility of the caller to ensure that normal processing takes
|
|
// place.
|
|
// The priority to consume messages is the following:
|
|
// - Native Windows' message filter (CallMsgFilter).
|
|
// - MessageFilter::ProcessMessage.
|
|
// - MessagePumpDispatcher.
|
|
// - TranslateMessage / DispatchMessage.
|
|
virtual bool ProcessMessage(const MSG& msg) { return false;}
|
|
};
|
|
// The application-defined code passed to the hook procedure.
|
|
static const int kMessageFilterCode = 0x5001;
|
|
|
|
MessagePumpForUI();
|
|
virtual ~MessagePumpForUI();
|
|
|
|
// Sets a new MessageFilter. MessagePumpForUI takes ownership of
|
|
// |message_filter|. When SetMessageFilter is called, old MessageFilter is
|
|
// deleted.
|
|
void SetMessageFilter(scoped_ptr<MessageFilter> message_filter);
|
|
|
|
// MessagePump methods:
|
|
virtual void ScheduleWork();
|
|
virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
|
|
|
|
// Applications can call this to encourage us to process all pending WM_PAINT
|
|
// messages. This method will process all paint messages the Windows Message
|
|
// queue can provide, up to some fixed number (to avoid any infinite loops).
|
|
void PumpOutPendingPaintMessages();
|
|
|
|
private:
|
|
static LRESULT CALLBACK WndProcThunk(HWND window_handle,
|
|
UINT message,
|
|
WPARAM wparam,
|
|
LPARAM lparam);
|
|
virtual void DoRunLoop();
|
|
void InitMessageWnd();
|
|
void WaitForWork();
|
|
void HandleWorkMessage();
|
|
void HandleTimerMessage();
|
|
bool ProcessNextWindowsMessage();
|
|
bool ProcessMessageHelper(const MSG& msg);
|
|
bool ProcessPumpReplacementMessage();
|
|
|
|
// Atom representing the registered window class.
|
|
ATOM atom_;
|
|
|
|
// A hidden message-only window.
|
|
HWND message_hwnd_;
|
|
|
|
scoped_ptr<MessageFilter> message_filter_;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
|
|
// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
|
|
// deal with Windows mesagges, and instead has a Run loop based on Completion
|
|
// Ports so it is better suited for IO operations.
|
|
//
|
|
class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
|
|
public:
|
|
struct IOContext;
|
|
|
|
// Clients interested in receiving OS notifications when asynchronous IO
|
|
// operations complete should implement this interface and register themselves
|
|
// with the message pump.
|
|
//
|
|
// Typical use #1:
|
|
// // Use only when there are no user's buffers involved on the actual IO,
|
|
// // so that all the cleanup can be done by the message pump.
|
|
// class MyFile : public IOHandler {
|
|
// MyFile() {
|
|
// ...
|
|
// context_ = new IOContext;
|
|
// context_->handler = this;
|
|
// message_pump->RegisterIOHandler(file_, this);
|
|
// }
|
|
// ~MyFile() {
|
|
// if (pending_) {
|
|
// // By setting the handler to NULL, we're asking for this context
|
|
// // to be deleted when received, without calling back to us.
|
|
// context_->handler = NULL;
|
|
// } else {
|
|
// delete context_;
|
|
// }
|
|
// }
|
|
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
|
|
// DWORD error) {
|
|
// pending_ = false;
|
|
// }
|
|
// void DoSomeIo() {
|
|
// ...
|
|
// // The only buffer required for this operation is the overlapped
|
|
// // structure.
|
|
// ConnectNamedPipe(file_, &context_->overlapped);
|
|
// pending_ = true;
|
|
// }
|
|
// bool pending_;
|
|
// IOContext* context_;
|
|
// HANDLE file_;
|
|
// };
|
|
//
|
|
// Typical use #2:
|
|
// class MyFile : public IOHandler {
|
|
// MyFile() {
|
|
// ...
|
|
// message_pump->RegisterIOHandler(file_, this);
|
|
// }
|
|
// // Plus some code to make sure that this destructor is not called
|
|
// // while there are pending IO operations.
|
|
// ~MyFile() {
|
|
// }
|
|
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
|
|
// DWORD error) {
|
|
// ...
|
|
// delete context;
|
|
// }
|
|
// void DoSomeIo() {
|
|
// ...
|
|
// IOContext* context = new IOContext;
|
|
// // This is not used for anything. It just prevents the context from
|
|
// // being considered "abandoned".
|
|
// context->handler = this;
|
|
// ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
|
|
// }
|
|
// HANDLE file_;
|
|
// };
|
|
//
|
|
// Typical use #3:
|
|
// Same as the previous example, except that in order to deal with the
|
|
// requirement stated for the destructor, the class calls WaitForIOCompletion
|
|
// from the destructor to block until all IO finishes.
|
|
// ~MyFile() {
|
|
// while(pending_)
|
|
// message_pump->WaitForIOCompletion(INFINITE, this);
|
|
// }
|
|
//
|
|
class IOHandler {
|
|
public:
|
|
virtual ~IOHandler() {}
|
|
// This will be called once the pending IO operation associated with
|
|
// |context| completes. |error| is the Win32 error code of the IO operation
|
|
// (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
|
|
// on error.
|
|
virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
|
|
DWORD error) = 0;
|
|
};
|
|
|
|
// An IOObserver is an object that receives IO notifications from the
|
|
// MessagePump.
|
|
//
|
|
// NOTE: An IOObserver implementation should be extremely fast!
|
|
class IOObserver {
|
|
public:
|
|
IOObserver() {}
|
|
|
|
virtual void WillProcessIOEvent() = 0;
|
|
virtual void DidProcessIOEvent() = 0;
|
|
|
|
protected:
|
|
virtual ~IOObserver() {}
|
|
};
|
|
|
|
// The extended context that should be used as the base structure on every
|
|
// overlapped IO operation. |handler| must be set to the registered IOHandler
|
|
// for the given file when the operation is started, and it can be set to NULL
|
|
// before the operation completes to indicate that the handler should not be
|
|
// called anymore, and instead, the IOContext should be deleted when the OS
|
|
// notifies the completion of this operation. Please remember that any buffers
|
|
// involved with an IO operation should be around until the callback is
|
|
// received, so this technique can only be used for IO that do not involve
|
|
// additional buffers (other than the overlapped structure itself).
|
|
struct IOContext {
|
|
OVERLAPPED overlapped;
|
|
IOHandler* handler;
|
|
};
|
|
|
|
MessagePumpForIO();
|
|
virtual ~MessagePumpForIO() {}
|
|
|
|
// MessagePump methods:
|
|
virtual void ScheduleWork();
|
|
virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
|
|
|
|
// Register the handler to be used when asynchronous IO for the given file
|
|
// completes. The registration persists as long as |file_handle| is valid, so
|
|
// |handler| must be valid as long as there is pending IO for the given file.
|
|
void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
|
|
|
|
// Register the handler to be used to process job events. The registration
|
|
// persists as long as the job object is live, so |handler| must be valid
|
|
// until the job object is destroyed. Returns true if the registration
|
|
// succeeded, and false otherwise.
|
|
bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
|
|
|
|
// Waits for the next IO completion that should be processed by |filter|, for
|
|
// up to |timeout| milliseconds. Return true if any IO operation completed,
|
|
// regardless of the involved handler, and false if the timeout expired. If
|
|
// the completion port received any message and the involved IO handler
|
|
// matches |filter|, the callback is called before returning from this code;
|
|
// if the handler is not the one that we are looking for, the callback will
|
|
// be postponed for another time, so reentrancy problems can be avoided.
|
|
// External use of this method should be reserved for the rare case when the
|
|
// caller is willing to allow pausing regular task dispatching on this thread.
|
|
bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
|
|
|
|
void AddIOObserver(IOObserver* obs);
|
|
void RemoveIOObserver(IOObserver* obs);
|
|
|
|
private:
|
|
struct IOItem {
|
|
IOHandler* handler;
|
|
IOContext* context;
|
|
DWORD bytes_transfered;
|
|
DWORD error;
|
|
|
|
// In some cases |context| can be a non-pointer value casted to a pointer.
|
|
// |has_valid_io_context| is true if |context| is a valid IOContext
|
|
// pointer, and false otherwise.
|
|
bool has_valid_io_context;
|
|
};
|
|
|
|
virtual void DoRunLoop();
|
|
void WaitForWork();
|
|
bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
|
|
bool GetIOItem(DWORD timeout, IOItem* item);
|
|
bool ProcessInternalIOItem(const IOItem& item);
|
|
void WillProcessIOEvent();
|
|
void DidProcessIOEvent();
|
|
|
|
// Converts an IOHandler pointer to a completion port key.
|
|
// |has_valid_io_context| specifies whether completion packets posted to
|
|
// |handler| will have valid OVERLAPPED pointers.
|
|
static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
|
|
|
|
// Converts a completion port key to an IOHandler pointer.
|
|
static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
|
|
|
|
// The completion port associated with this thread.
|
|
win::ScopedHandle port_;
|
|
// This list will be empty almost always. It stores IO completions that have
|
|
// not been delivered yet because somebody was doing cleanup.
|
|
std::list<IOItem> completed_io_;
|
|
|
|
ObserverList<IOObserver> io_observers_;
|
|
};
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|