871 lines
29 KiB
C++
871 lines
29 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/tracked_objects.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "base/compiler_specific.h"
|
|
#include "base/debug/leak_annotations.h"
|
|
#include "base/format_macros.h"
|
|
#include "base/memory/scoped_ptr.h"
|
|
#include "base/port.h"
|
|
#include "base/process/process_handle.h"
|
|
#include "base/profiler/alternate_timer.h"
|
|
#include "base/strings/stringprintf.h"
|
|
#include "base/third_party/valgrind/memcheck.h"
|
|
#include "base/threading/thread_restrictions.h"
|
|
|
|
using base::TimeDelta;
|
|
|
|
namespace tracked_objects {
|
|
|
|
namespace {
|
|
// Flag to compile out almost all of the task tracking code.
|
|
const bool kTrackAllTaskObjects = true;
|
|
|
|
// TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
|
|
// negligible, enable by default.
|
|
// Flag to compile out parent-child link recording.
|
|
const bool kTrackParentChildLinks = false;
|
|
|
|
// When ThreadData is first initialized, should we start in an ACTIVE state to
|
|
// record all of the startup-time tasks, or should we start up DEACTIVATED, so
|
|
// that we only record after parsing the command line flag --enable-tracking.
|
|
// Note that the flag may force either state, so this really controls only the
|
|
// period of time up until that flag is parsed. If there is no flag seen, then
|
|
// this state may prevail for much or all of the process lifetime.
|
|
const ThreadData::Status kInitialStartupState =
|
|
ThreadData::PROFILING_CHILDREN_ACTIVE;
|
|
|
|
// Control whether an alternate time source (Now() function) is supported by
|
|
// the ThreadData class. This compile time flag should be set to true if we
|
|
// want other modules (such as a memory allocator, or a thread-specific CPU time
|
|
// clock) to be able to provide a thread-specific Now() function. Without this
|
|
// compile-time flag, the code will only support the wall-clock time. This flag
|
|
// can be flipped to efficiently disable this path (if there is a performance
|
|
// problem with its presence).
|
|
static const bool kAllowAlternateTimeSourceHandling = true;
|
|
|
|
} // namespace
|
|
|
|
//------------------------------------------------------------------------------
|
|
// DeathData tallies durations when a death takes place.
|
|
|
|
DeathData::DeathData() {
|
|
Clear();
|
|
}
|
|
|
|
DeathData::DeathData(int count) {
|
|
Clear();
|
|
count_ = count;
|
|
}
|
|
|
|
// TODO(jar): I need to see if this macro to optimize branching is worth using.
|
|
//
|
|
// This macro has no branching, so it is surely fast, and is equivalent to:
|
|
// if (assign_it)
|
|
// target = source;
|
|
// We use a macro rather than a template to force this to inline.
|
|
// Related code for calculating max is discussed on the web.
|
|
#define CONDITIONAL_ASSIGN(assign_it, target, source) \
|
|
((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
|
|
|
|
void DeathData::RecordDeath(const int32 queue_duration,
|
|
const int32 run_duration,
|
|
int32 random_number) {
|
|
// We'll just clamp at INT_MAX, but we should note this in the UI as such.
|
|
if (count_ < INT_MAX)
|
|
++count_;
|
|
queue_duration_sum_ += queue_duration;
|
|
run_duration_sum_ += run_duration;
|
|
|
|
if (queue_duration_max_ < queue_duration)
|
|
queue_duration_max_ = queue_duration;
|
|
if (run_duration_max_ < run_duration)
|
|
run_duration_max_ = run_duration;
|
|
|
|
// Take a uniformly distributed sample over all durations ever supplied.
|
|
// The probability that we (instead) use this new sample is 1/count_. This
|
|
// results in a completely uniform selection of the sample (at least when we
|
|
// don't clamp count_... but that should be inconsequentially likely).
|
|
// We ignore the fact that we correlated our selection of a sample to the run
|
|
// and queue times (i.e., we used them to generate random_number).
|
|
CHECK_GT(count_, 0);
|
|
if (0 == (random_number % count_)) {
|
|
queue_duration_sample_ = queue_duration;
|
|
run_duration_sample_ = run_duration;
|
|
}
|
|
}
|
|
|
|
int DeathData::count() const { return count_; }
|
|
|
|
int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
|
|
|
|
int32 DeathData::run_duration_max() const { return run_duration_max_; }
|
|
|
|
int32 DeathData::run_duration_sample() const {
|
|
return run_duration_sample_;
|
|
}
|
|
|
|
int32 DeathData::queue_duration_sum() const {
|
|
return queue_duration_sum_;
|
|
}
|
|
|
|
int32 DeathData::queue_duration_max() const {
|
|
return queue_duration_max_;
|
|
}
|
|
|
|
int32 DeathData::queue_duration_sample() const {
|
|
return queue_duration_sample_;
|
|
}
|
|
|
|
void DeathData::ResetMax() {
|
|
run_duration_max_ = 0;
|
|
queue_duration_max_ = 0;
|
|
}
|
|
|
|
void DeathData::Clear() {
|
|
count_ = 0;
|
|
run_duration_sum_ = 0;
|
|
run_duration_max_ = 0;
|
|
run_duration_sample_ = 0;
|
|
queue_duration_sum_ = 0;
|
|
queue_duration_max_ = 0;
|
|
queue_duration_sample_ = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
DeathDataSnapshot::DeathDataSnapshot()
|
|
: count(-1),
|
|
run_duration_sum(-1),
|
|
run_duration_max(-1),
|
|
run_duration_sample(-1),
|
|
queue_duration_sum(-1),
|
|
queue_duration_max(-1),
|
|
queue_duration_sample(-1) {
|
|
}
|
|
|
|
DeathDataSnapshot::DeathDataSnapshot(
|
|
const tracked_objects::DeathData& death_data)
|
|
: count(death_data.count()),
|
|
run_duration_sum(death_data.run_duration_sum()),
|
|
run_duration_max(death_data.run_duration_max()),
|
|
run_duration_sample(death_data.run_duration_sample()),
|
|
queue_duration_sum(death_data.queue_duration_sum()),
|
|
queue_duration_max(death_data.queue_duration_max()),
|
|
queue_duration_sample(death_data.queue_duration_sample()) {
|
|
}
|
|
|
|
DeathDataSnapshot::~DeathDataSnapshot() {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
BirthOnThread::BirthOnThread(const Location& location,
|
|
const ThreadData& current)
|
|
: location_(location),
|
|
birth_thread_(¤t) {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
|
|
}
|
|
|
|
BirthOnThreadSnapshot::BirthOnThreadSnapshot(
|
|
const tracked_objects::BirthOnThread& birth)
|
|
: location(birth.location()),
|
|
thread_name(birth.birth_thread()->thread_name()) {
|
|
}
|
|
|
|
BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
Births::Births(const Location& location, const ThreadData& current)
|
|
: BirthOnThread(location, current),
|
|
birth_count_(1) { }
|
|
|
|
int Births::birth_count() const { return birth_count_; }
|
|
|
|
void Births::RecordBirth() { ++birth_count_; }
|
|
|
|
void Births::ForgetBirth() { --birth_count_; }
|
|
|
|
void Births::Clear() { birth_count_ = 0; }
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ThreadData maintains the central data for all births and deaths on a single
|
|
// thread.
|
|
|
|
// TODO(jar): We should pull all these static vars together, into a struct, and
|
|
// optimize layout so that we benefit from locality of reference during accesses
|
|
// to them.
|
|
|
|
// static
|
|
NowFunction* ThreadData::now_function_ = NULL;
|
|
|
|
// A TLS slot which points to the ThreadData instance for the current thread. We
|
|
// do a fake initialization here (zeroing out data), and then the real in-place
|
|
// construction happens when we call tls_index_.Initialize().
|
|
// static
|
|
base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
|
|
|
|
// static
|
|
int ThreadData::worker_thread_data_creation_count_ = 0;
|
|
|
|
// static
|
|
int ThreadData::cleanup_count_ = 0;
|
|
|
|
// static
|
|
int ThreadData::incarnation_counter_ = 0;
|
|
|
|
// static
|
|
ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
|
|
|
|
// static
|
|
ThreadData* ThreadData::first_retired_worker_ = NULL;
|
|
|
|
// static
|
|
base::LazyInstance<base::Lock>::Leaky
|
|
ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
|
|
|
|
// static
|
|
ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
|
|
|
|
ThreadData::ThreadData(const std::string& suggested_name)
|
|
: next_(NULL),
|
|
next_retired_worker_(NULL),
|
|
worker_thread_number_(0),
|
|
incarnation_count_for_pool_(-1) {
|
|
DCHECK_GE(suggested_name.size(), 0u);
|
|
thread_name_ = suggested_name;
|
|
PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
|
|
}
|
|
|
|
ThreadData::ThreadData(int thread_number)
|
|
: next_(NULL),
|
|
next_retired_worker_(NULL),
|
|
worker_thread_number_(thread_number),
|
|
incarnation_count_for_pool_(-1) {
|
|
CHECK_GT(thread_number, 0);
|
|
base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
|
|
PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
|
|
}
|
|
|
|
ThreadData::~ThreadData() {}
|
|
|
|
void ThreadData::PushToHeadOfList() {
|
|
// Toss in a hint of randomness (atop the uniniitalized value).
|
|
(void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
|
|
sizeof(random_number_));
|
|
MSAN_UNPOISON(&random_number_, sizeof(random_number_));
|
|
random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
|
|
random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
|
|
|
|
DCHECK(!next_);
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
incarnation_count_for_pool_ = incarnation_counter_;
|
|
next_ = all_thread_data_list_head_;
|
|
all_thread_data_list_head_ = this;
|
|
}
|
|
|
|
// static
|
|
ThreadData* ThreadData::first() {
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
return all_thread_data_list_head_;
|
|
}
|
|
|
|
ThreadData* ThreadData::next() const { return next_; }
|
|
|
|
// static
|
|
void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
|
|
if (!Initialize()) // Always initialize if needed.
|
|
return;
|
|
ThreadData* current_thread_data =
|
|
reinterpret_cast<ThreadData*>(tls_index_.Get());
|
|
if (current_thread_data)
|
|
return; // Browser tests instigate this.
|
|
current_thread_data = new ThreadData(suggested_name);
|
|
tls_index_.Set(current_thread_data);
|
|
}
|
|
|
|
// static
|
|
ThreadData* ThreadData::Get() {
|
|
if (!tls_index_.initialized())
|
|
return NULL; // For unittests only.
|
|
ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
|
|
if (registered)
|
|
return registered;
|
|
|
|
// We must be a worker thread, since we didn't pre-register.
|
|
ThreadData* worker_thread_data = NULL;
|
|
int worker_thread_number = 0;
|
|
{
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
if (first_retired_worker_) {
|
|
worker_thread_data = first_retired_worker_;
|
|
first_retired_worker_ = first_retired_worker_->next_retired_worker_;
|
|
worker_thread_data->next_retired_worker_ = NULL;
|
|
} else {
|
|
worker_thread_number = ++worker_thread_data_creation_count_;
|
|
}
|
|
}
|
|
|
|
// If we can't find a previously used instance, then we have to create one.
|
|
if (!worker_thread_data) {
|
|
DCHECK_GT(worker_thread_number, 0);
|
|
worker_thread_data = new ThreadData(worker_thread_number);
|
|
}
|
|
DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
|
|
|
|
tls_index_.Set(worker_thread_data);
|
|
return worker_thread_data;
|
|
}
|
|
|
|
// static
|
|
void ThreadData::OnThreadTermination(void* thread_data) {
|
|
DCHECK(thread_data); // TLS should *never* call us with a NULL.
|
|
// We must NOT do any allocations during this callback. There is a chance
|
|
// that the allocator is no longer active on this thread.
|
|
if (!kTrackAllTaskObjects)
|
|
return; // Not compiled in.
|
|
reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
|
|
}
|
|
|
|
void ThreadData::OnThreadTerminationCleanup() {
|
|
// The list_lock_ was created when we registered the callback, so it won't be
|
|
// allocated here despite the lazy reference.
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
if (incarnation_counter_ != incarnation_count_for_pool_)
|
|
return; // ThreadData was constructed in an earlier unit test.
|
|
++cleanup_count_;
|
|
// Only worker threads need to be retired and reused.
|
|
if (!worker_thread_number_) {
|
|
return;
|
|
}
|
|
// We must NOT do any allocations during this callback.
|
|
// Using the simple linked lists avoids all allocations.
|
|
DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
|
|
this->next_retired_worker_ = first_retired_worker_;
|
|
first_retired_worker_ = this;
|
|
}
|
|
|
|
// static
|
|
void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) {
|
|
// Add births that have run to completion to |collected_data|.
|
|
// |birth_counts| tracks the total number of births recorded at each location
|
|
// for which we have not seen a death count.
|
|
BirthCountMap birth_counts;
|
|
ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts);
|
|
|
|
// Add births that are still active -- i.e. objects that have tallied a birth,
|
|
// but have not yet tallied a matching death, and hence must be either
|
|
// running, queued up, or being held in limbo for future posting.
|
|
for (BirthCountMap::const_iterator it = birth_counts.begin();
|
|
it != birth_counts.end(); ++it) {
|
|
if (it->second > 0) {
|
|
process_data->tasks.push_back(
|
|
TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
|
|
}
|
|
}
|
|
}
|
|
|
|
Births* ThreadData::TallyABirth(const Location& location) {
|
|
BirthMap::iterator it = birth_map_.find(location);
|
|
Births* child;
|
|
if (it != birth_map_.end()) {
|
|
child = it->second;
|
|
child->RecordBirth();
|
|
} else {
|
|
child = new Births(location, *this); // Leak this.
|
|
// Lock since the map may get relocated now, and other threads sometimes
|
|
// snapshot it (but they lock before copying it).
|
|
base::AutoLock lock(map_lock_);
|
|
birth_map_[location] = child;
|
|
}
|
|
|
|
if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
|
|
!parent_stack_.empty()) {
|
|
const Births* parent = parent_stack_.top();
|
|
ParentChildPair pair(parent, child);
|
|
if (parent_child_set_.find(pair) == parent_child_set_.end()) {
|
|
// Lock since the map may get relocated now, and other threads sometimes
|
|
// snapshot it (but they lock before copying it).
|
|
base::AutoLock lock(map_lock_);
|
|
parent_child_set_.insert(pair);
|
|
}
|
|
}
|
|
|
|
return child;
|
|
}
|
|
|
|
void ThreadData::TallyADeath(const Births& birth,
|
|
int32 queue_duration,
|
|
int32 run_duration) {
|
|
// Stir in some randomness, plus add constant in case durations are zero.
|
|
const int32 kSomePrimeNumber = 2147483647;
|
|
random_number_ += queue_duration + run_duration + kSomePrimeNumber;
|
|
// An address is going to have some randomness to it as well ;-).
|
|
random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));
|
|
|
|
// We don't have queue durations without OS timer. OS timer is automatically
|
|
// used for task-post-timing, so the use of an alternate timer implies all
|
|
// queue times are invalid.
|
|
if (kAllowAlternateTimeSourceHandling && now_function_)
|
|
queue_duration = 0;
|
|
|
|
DeathMap::iterator it = death_map_.find(&birth);
|
|
DeathData* death_data;
|
|
if (it != death_map_.end()) {
|
|
death_data = &it->second;
|
|
} else {
|
|
base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
|
|
death_data = &death_map_[&birth];
|
|
} // Release lock ASAP.
|
|
death_data->RecordDeath(queue_duration, run_duration, random_number_);
|
|
|
|
if (!kTrackParentChildLinks)
|
|
return;
|
|
if (!parent_stack_.empty()) { // We might get turned off.
|
|
DCHECK_EQ(parent_stack_.top(), &birth);
|
|
parent_stack_.pop();
|
|
}
|
|
}
|
|
|
|
// static
|
|
Births* ThreadData::TallyABirthIfActive(const Location& location) {
|
|
if (!kTrackAllTaskObjects)
|
|
return NULL; // Not compiled in.
|
|
|
|
if (!TrackingStatus())
|
|
return NULL;
|
|
ThreadData* current_thread_data = Get();
|
|
if (!current_thread_data)
|
|
return NULL;
|
|
return current_thread_data->TallyABirth(location);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::TallyRunOnNamedThreadIfTracking(
|
|
const base::TrackingInfo& completed_task,
|
|
const TrackedTime& start_of_run,
|
|
const TrackedTime& end_of_run) {
|
|
if (!kTrackAllTaskObjects)
|
|
return; // Not compiled in.
|
|
|
|
// Even if we have been DEACTIVATED, we will process any pending births so
|
|
// that our data structures (which counted the outstanding births) remain
|
|
// consistent.
|
|
const Births* birth = completed_task.birth_tally;
|
|
if (!birth)
|
|
return;
|
|
ThreadData* current_thread_data = Get();
|
|
if (!current_thread_data)
|
|
return;
|
|
|
|
// Watch out for a race where status_ is changing, and hence one or both
|
|
// of start_of_run or end_of_run is zero. In that case, we didn't bother to
|
|
// get a time value since we "weren't tracking" and we were trying to be
|
|
// efficient by not calling for a genuine time value. For simplicity, we'll
|
|
// use a default zero duration when we can't calculate a true value.
|
|
int32 queue_duration = 0;
|
|
int32 run_duration = 0;
|
|
if (!start_of_run.is_null()) {
|
|
queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
|
|
.InMilliseconds();
|
|
if (!end_of_run.is_null())
|
|
run_duration = (end_of_run - start_of_run).InMilliseconds();
|
|
}
|
|
current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::TallyRunOnWorkerThreadIfTracking(
|
|
const Births* birth,
|
|
const TrackedTime& time_posted,
|
|
const TrackedTime& start_of_run,
|
|
const TrackedTime& end_of_run) {
|
|
if (!kTrackAllTaskObjects)
|
|
return; // Not compiled in.
|
|
|
|
// Even if we have been DEACTIVATED, we will process any pending births so
|
|
// that our data structures (which counted the outstanding births) remain
|
|
// consistent.
|
|
if (!birth)
|
|
return;
|
|
|
|
// TODO(jar): Support the option to coalesce all worker-thread activity under
|
|
// one ThreadData instance that uses locks to protect *all* access. This will
|
|
// reduce memory (making it provably bounded), but run incrementally slower
|
|
// (since we'll use locks on TallyABirth and TallyADeath). The good news is
|
|
// that the locks on TallyADeath will be *after* the worker thread has run,
|
|
// and hence nothing will be waiting for the completion (... besides some
|
|
// other thread that might like to run). Also, the worker threads tasks are
|
|
// generally longer, and hence the cost of the lock may perchance be amortized
|
|
// over the long task's lifetime.
|
|
ThreadData* current_thread_data = Get();
|
|
if (!current_thread_data)
|
|
return;
|
|
|
|
int32 queue_duration = 0;
|
|
int32 run_duration = 0;
|
|
if (!start_of_run.is_null()) {
|
|
queue_duration = (start_of_run - time_posted).InMilliseconds();
|
|
if (!end_of_run.is_null())
|
|
run_duration = (end_of_run - start_of_run).InMilliseconds();
|
|
}
|
|
current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::TallyRunInAScopedRegionIfTracking(
|
|
const Births* birth,
|
|
const TrackedTime& start_of_run,
|
|
const TrackedTime& end_of_run) {
|
|
if (!kTrackAllTaskObjects)
|
|
return; // Not compiled in.
|
|
|
|
// Even if we have been DEACTIVATED, we will process any pending births so
|
|
// that our data structures (which counted the outstanding births) remain
|
|
// consistent.
|
|
if (!birth)
|
|
return;
|
|
|
|
ThreadData* current_thread_data = Get();
|
|
if (!current_thread_data)
|
|
return;
|
|
|
|
int32 queue_duration = 0;
|
|
int32 run_duration = 0;
|
|
if (!start_of_run.is_null() && !end_of_run.is_null())
|
|
run_duration = (end_of_run - start_of_run).InMilliseconds();
|
|
current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::SnapshotAllExecutedTasks(bool reset_max,
|
|
ProcessDataSnapshot* process_data,
|
|
BirthCountMap* birth_counts) {
|
|
if (!kTrackAllTaskObjects)
|
|
return; // Not compiled in.
|
|
|
|
// Get an unchanging copy of a ThreadData list.
|
|
ThreadData* my_list = ThreadData::first();
|
|
|
|
// Gather data serially.
|
|
// This hackish approach *can* get some slighly corrupt tallies, as we are
|
|
// grabbing values without the protection of a lock, but it has the advantage
|
|
// of working even with threads that don't have message loops. If a user
|
|
// sees any strangeness, they can always just run their stats gathering a
|
|
// second time.
|
|
for (ThreadData* thread_data = my_list;
|
|
thread_data;
|
|
thread_data = thread_data->next()) {
|
|
thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts);
|
|
}
|
|
}
|
|
|
|
void ThreadData::SnapshotExecutedTasks(bool reset_max,
|
|
ProcessDataSnapshot* process_data,
|
|
BirthCountMap* birth_counts) {
|
|
// Get copy of data, so that the data will not change during the iterations
|
|
// and processing.
|
|
ThreadData::BirthMap birth_map;
|
|
ThreadData::DeathMap death_map;
|
|
ThreadData::ParentChildSet parent_child_set;
|
|
SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set);
|
|
|
|
for (ThreadData::DeathMap::const_iterator it = death_map.begin();
|
|
it != death_map.end(); ++it) {
|
|
process_data->tasks.push_back(
|
|
TaskSnapshot(*it->first, it->second, thread_name()));
|
|
(*birth_counts)[it->first] -= it->first->birth_count();
|
|
}
|
|
|
|
for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
|
|
it != birth_map.end(); ++it) {
|
|
(*birth_counts)[it->second] += it->second->birth_count();
|
|
}
|
|
|
|
if (!kTrackParentChildLinks)
|
|
return;
|
|
|
|
for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
|
|
it != parent_child_set.end(); ++it) {
|
|
process_data->descendants.push_back(ParentChildPairSnapshot(*it));
|
|
}
|
|
}
|
|
|
|
// This may be called from another thread.
|
|
void ThreadData::SnapshotMaps(bool reset_max,
|
|
BirthMap* birth_map,
|
|
DeathMap* death_map,
|
|
ParentChildSet* parent_child_set) {
|
|
base::AutoLock lock(map_lock_);
|
|
for (BirthMap::const_iterator it = birth_map_.begin();
|
|
it != birth_map_.end(); ++it)
|
|
(*birth_map)[it->first] = it->second;
|
|
for (DeathMap::iterator it = death_map_.begin();
|
|
it != death_map_.end(); ++it) {
|
|
(*death_map)[it->first] = it->second;
|
|
if (reset_max)
|
|
it->second.ResetMax();
|
|
}
|
|
|
|
if (!kTrackParentChildLinks)
|
|
return;
|
|
|
|
for (ParentChildSet::iterator it = parent_child_set_.begin();
|
|
it != parent_child_set_.end(); ++it)
|
|
parent_child_set->insert(*it);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::ResetAllThreadData() {
|
|
ThreadData* my_list = first();
|
|
|
|
for (ThreadData* thread_data = my_list;
|
|
thread_data;
|
|
thread_data = thread_data->next())
|
|
thread_data->Reset();
|
|
}
|
|
|
|
void ThreadData::Reset() {
|
|
base::AutoLock lock(map_lock_);
|
|
for (DeathMap::iterator it = death_map_.begin();
|
|
it != death_map_.end(); ++it)
|
|
it->second.Clear();
|
|
for (BirthMap::iterator it = birth_map_.begin();
|
|
it != birth_map_.end(); ++it)
|
|
it->second->Clear();
|
|
}
|
|
|
|
static void OptionallyInitializeAlternateTimer() {
|
|
NowFunction* alternate_time_source = GetAlternateTimeSource();
|
|
if (alternate_time_source)
|
|
ThreadData::SetAlternateTimeSource(alternate_time_source);
|
|
}
|
|
|
|
bool ThreadData::Initialize() {
|
|
if (!kTrackAllTaskObjects)
|
|
return false; // Not compiled in.
|
|
if (status_ >= DEACTIVATED)
|
|
return true; // Someone else did the initialization.
|
|
// Due to racy lazy initialization in tests, we'll need to recheck status_
|
|
// after we acquire the lock.
|
|
|
|
// Ensure that we don't double initialize tls. We are called when single
|
|
// threaded in the product, but some tests may be racy and lazy about our
|
|
// initialization.
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
if (status_ >= DEACTIVATED)
|
|
return true; // Someone raced in here and beat us.
|
|
|
|
// Put an alternate timer in place if the environment calls for it, such as
|
|
// for tracking TCMalloc allocations. This insertion is idempotent, so we
|
|
// don't mind if there is a race, and we'd prefer not to be in a lock while
|
|
// doing this work.
|
|
if (kAllowAlternateTimeSourceHandling)
|
|
OptionallyInitializeAlternateTimer();
|
|
|
|
// Perform the "real" TLS initialization now, and leave it intact through
|
|
// process termination.
|
|
if (!tls_index_.initialized()) { // Testing may have initialized this.
|
|
DCHECK_EQ(status_, UNINITIALIZED);
|
|
tls_index_.Initialize(&ThreadData::OnThreadTermination);
|
|
if (!tls_index_.initialized())
|
|
return false;
|
|
} else {
|
|
// TLS was initialzed for us earlier.
|
|
DCHECK_EQ(status_, DORMANT_DURING_TESTS);
|
|
}
|
|
|
|
// Incarnation counter is only significant to testing, as it otherwise will
|
|
// never again change in this process.
|
|
++incarnation_counter_;
|
|
|
|
// The lock is not critical for setting status_, but it doesn't hurt. It also
|
|
// ensures that if we have a racy initialization, that we'll bail as soon as
|
|
// we get the lock earlier in this method.
|
|
status_ = kInitialStartupState;
|
|
if (!kTrackParentChildLinks &&
|
|
kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
|
|
status_ = PROFILING_ACTIVE;
|
|
DCHECK(status_ != UNINITIALIZED);
|
|
return true;
|
|
}
|
|
|
|
// static
|
|
bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
|
|
DCHECK_GE(status, DEACTIVATED);
|
|
DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
|
|
|
|
if (!Initialize()) // No-op if already initialized.
|
|
return false; // Not compiled in.
|
|
|
|
if (!kTrackParentChildLinks && status > DEACTIVATED)
|
|
status = PROFILING_ACTIVE;
|
|
status_ = status;
|
|
return true;
|
|
}
|
|
|
|
// static
|
|
ThreadData::Status ThreadData::status() {
|
|
return status_;
|
|
}
|
|
|
|
// static
|
|
bool ThreadData::TrackingStatus() {
|
|
return status_ > DEACTIVATED;
|
|
}
|
|
|
|
// static
|
|
bool ThreadData::TrackingParentChildStatus() {
|
|
return status_ >= PROFILING_CHILDREN_ACTIVE;
|
|
}
|
|
|
|
// static
|
|
TrackedTime ThreadData::NowForStartOfRun(const Births* parent) {
|
|
if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
|
|
ThreadData* current_thread_data = Get();
|
|
if (current_thread_data)
|
|
current_thread_data->parent_stack_.push(parent);
|
|
}
|
|
return Now();
|
|
}
|
|
|
|
// static
|
|
TrackedTime ThreadData::NowForEndOfRun() {
|
|
return Now();
|
|
}
|
|
|
|
// static
|
|
void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
|
|
DCHECK(now_function);
|
|
if (kAllowAlternateTimeSourceHandling)
|
|
now_function_ = now_function;
|
|
}
|
|
|
|
// static
|
|
TrackedTime ThreadData::Now() {
|
|
if (kAllowAlternateTimeSourceHandling && now_function_)
|
|
return TrackedTime::FromMilliseconds((*now_function_)());
|
|
if (kTrackAllTaskObjects && TrackingStatus())
|
|
return TrackedTime::Now();
|
|
return TrackedTime(); // Super fast when disabled, or not compiled.
|
|
}
|
|
|
|
// static
|
|
void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
if (worker_thread_data_creation_count_ == 0)
|
|
return; // We haven't really run much, and couldn't have leaked.
|
|
// Verify that we've at least shutdown/cleanup the major namesd threads. The
|
|
// caller should tell us how many thread shutdowns should have taken place by
|
|
// now.
|
|
return; // TODO(jar): until this is working on XP, don't run the real test.
|
|
CHECK_GT(cleanup_count_, major_threads_shutdown_count);
|
|
}
|
|
|
|
// static
|
|
void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
|
|
// This is only called from test code, where we need to cleanup so that
|
|
// additional tests can be run.
|
|
// We must be single threaded... but be careful anyway.
|
|
if (!InitializeAndSetTrackingStatus(DEACTIVATED))
|
|
return;
|
|
ThreadData* thread_data_list;
|
|
{
|
|
base::AutoLock lock(*list_lock_.Pointer());
|
|
thread_data_list = all_thread_data_list_head_;
|
|
all_thread_data_list_head_ = NULL;
|
|
++incarnation_counter_;
|
|
// To be clean, break apart the retired worker list (though we leak them).
|
|
while (first_retired_worker_) {
|
|
ThreadData* worker = first_retired_worker_;
|
|
CHECK_GT(worker->worker_thread_number_, 0);
|
|
first_retired_worker_ = worker->next_retired_worker_;
|
|
worker->next_retired_worker_ = NULL;
|
|
}
|
|
}
|
|
|
|
// Put most global static back in pristine shape.
|
|
worker_thread_data_creation_count_ = 0;
|
|
cleanup_count_ = 0;
|
|
tls_index_.Set(NULL);
|
|
status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED.
|
|
|
|
// To avoid any chance of racing in unit tests, which is the only place we
|
|
// call this function, we may sometimes leak all the data structures we
|
|
// recovered, as they may still be in use on threads from prior tests!
|
|
if (leak) {
|
|
ThreadData* thread_data = thread_data_list;
|
|
while (thread_data) {
|
|
ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
|
|
thread_data = thread_data->next();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// When we want to cleanup (on a single thread), here is what we do.
|
|
|
|
// Do actual recursive delete in all ThreadData instances.
|
|
while (thread_data_list) {
|
|
ThreadData* next_thread_data = thread_data_list;
|
|
thread_data_list = thread_data_list->next();
|
|
|
|
for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
|
|
next_thread_data->birth_map_.end() != it; ++it)
|
|
delete it->second; // Delete the Birth Records.
|
|
delete next_thread_data; // Includes all Death Records.
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
TaskSnapshot::TaskSnapshot() {
|
|
}
|
|
|
|
TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
|
|
const DeathData& death_data,
|
|
const std::string& death_thread_name)
|
|
: birth(birth),
|
|
death_data(death_data),
|
|
death_thread_name(death_thread_name) {
|
|
}
|
|
|
|
TaskSnapshot::~TaskSnapshot() {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ParentChildPairSnapshot
|
|
|
|
ParentChildPairSnapshot::ParentChildPairSnapshot() {
|
|
}
|
|
|
|
ParentChildPairSnapshot::ParentChildPairSnapshot(
|
|
const ThreadData::ParentChildPair& parent_child)
|
|
: parent(*parent_child.first),
|
|
child(*parent_child.second) {
|
|
}
|
|
|
|
ParentChildPairSnapshot::~ParentChildPairSnapshot() {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ProcessDataSnapshot
|
|
|
|
ProcessDataSnapshot::ProcessDataSnapshot()
|
|
#if !defined(OS_NACL)
|
|
: process_id(base::GetCurrentProcId()) {
|
|
#else
|
|
: process_id(0) {
|
|
#endif
|
|
}
|
|
|
|
ProcessDataSnapshot::~ProcessDataSnapshot() {
|
|
}
|
|
|
|
} // namespace tracked_objects
|