shaka-packager/packager/media/base/aes_cryptor_unittest.cc

625 lines
24 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include <gtest/gtest.h>
#include <memory>
#include "packager/base/logging.h"
#include "packager/base/strings/string_number_conversions.h"
#include "packager/media/base/aes_decryptor.h"
#include "packager/media/base/aes_encryptor.h"
namespace {
const uint32_t kAesBlockSize = 16;
// From NIST SP 800-38a test case: - F.5.1 CTR-AES128.Encrypt
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
const uint8_t kAesKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};
const uint8_t kAesIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff};
const uint8_t kAesCtrPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
const uint8_t kAesCtrCiphertext[] = {
// Block #1
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
// Block #2
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
// Block #3
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
// Block #4
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee};
// Subsample test cases.
struct SubsampleTestCase {
const uint8_t* subsample_sizes;
uint32_t subsample_count;
};
const uint8_t kSubsampleTest1[] = {64};
const uint8_t kSubsampleTest2[] = {13, 51};
const uint8_t kSubsampleTest3[] = {52, 12};
const uint8_t kSubsampleTest4[] = {16, 48};
const uint8_t kSubsampleTest5[] = {3, 16, 45};
const uint8_t kSubsampleTest6[] = {18, 12, 34};
const uint8_t kSubsampleTest7[] = {8, 16, 2, 38};
const uint8_t kSubsampleTest8[] = {10, 1, 33, 20};
const uint8_t kSubsampleTest9[] = {7, 19, 6, 32};
const uint8_t kSubsampleTest10[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9};
const SubsampleTestCase kSubsampleTestCases[] = {
{kSubsampleTest1, arraysize(kSubsampleTest1)},
{kSubsampleTest2, arraysize(kSubsampleTest2)},
{kSubsampleTest3, arraysize(kSubsampleTest3)},
{kSubsampleTest4, arraysize(kSubsampleTest4)},
{kSubsampleTest5, arraysize(kSubsampleTest5)},
{kSubsampleTest6, arraysize(kSubsampleTest6)},
{kSubsampleTest7, arraysize(kSubsampleTest7)},
{kSubsampleTest8, arraysize(kSubsampleTest8)},
{kSubsampleTest9, arraysize(kSubsampleTest9)},
{kSubsampleTest10, arraysize(kSubsampleTest10)}};
// IV test values.
const uint32_t kTextSizeInBytes = 60; // 3 full blocks + 1 partial block.
const uint8_t kIv128Zero[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const uint8_t kIv128Two[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2};
const uint8_t kIv128Four[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
const uint8_t kIv128Max64[] = {0, 0, 0, 0, 0, 0, 0, 0,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t kIv128OneAndThree[] = {0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 3};
const uint8_t kIv128MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8_t kIv64Zero[] = {0, 0, 0, 0, 0, 0, 0, 0};
const uint8_t kIv64One[] = {0, 0, 0, 0, 0, 0, 0, 1};
const uint8_t kIv64MaxMinusOne[] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe};
const uint8_t kIv64Max[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct IvTestCase {
const uint8_t* iv_test;
uint32_t iv_size;
const uint8_t* iv_expected;
};
// As recommended in ISO/IEC FDIS 23001-7: CENC spec,
// For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples
// can be created by incrementing the initialization vector of the previous
// sample. For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample to
// the initialization vector of the previous sample.
const IvTestCase kIvTestCases[] = {
{kIv128Zero, arraysize(kIv128Zero), kIv128Four},
{kIv128Max64, arraysize(kIv128Max64), kIv128OneAndThree},
{kIv128MaxMinusOne, arraysize(kIv128MaxMinusOne), kIv128Two},
{kIv64Zero, arraysize(kIv64Zero), kIv64One},
{kIv64MaxMinusOne, arraysize(kIv64MaxMinusOne), kIv64Max},
{kIv64Max, arraysize(kIv64Max), kIv64Zero}};
// We support AES 128, i.e. 16 bytes key only.
const uint8_t kInvalidKey[] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2,
0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09};
// We support Iv of size 8 or 16 only as defined in CENC spec.
const uint8_t kInvalidIv[] = {0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe};
} // namespace
namespace shaka {
namespace media {
class AesCtrEncryptorTest : public testing::Test {
public:
void SetUp() override {
key_.assign(kAesKey, kAesKey + arraysize(kAesKey));
iv_.assign(kAesIv, kAesIv + arraysize(kAesIv));
plaintext_.assign(kAesCtrPlaintext,
kAesCtrPlaintext + arraysize(kAesCtrPlaintext));
ciphertext_.assign(kAesCtrCiphertext,
kAesCtrCiphertext + arraysize(kAesCtrCiphertext));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_));
ASSERT_TRUE(decryptor_.InitializeWithIv(key_, iv_));
}
protected:
std::vector<uint8_t> key_;
std::vector<uint8_t> iv_;
std::vector<uint8_t> plaintext_;
std::vector<uint8_t> ciphertext_;
AesCtrEncryptor encryptor_;
AesCtrDecryptor decryptor_;
};
TEST_F(AesCtrEncryptorTest, NistTestCase) {
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor_.Crypt(plaintext_, &encrypted));
EXPECT_EQ(ciphertext_, encrypted);
ASSERT_TRUE(decryptor_.SetIv(iv_));
std::vector<uint8_t> decrypted;
ASSERT_TRUE(decryptor_.Crypt(encrypted, &decrypted));
EXPECT_EQ(plaintext_, decrypted);
}
TEST_F(AesCtrEncryptorTest, NistTestCaseInplaceEncryptionDecryption) {
std::vector<uint8_t> buffer = plaintext_;
ASSERT_TRUE(encryptor_.Crypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(ciphertext_, buffer);
ASSERT_TRUE(decryptor_.SetIv(iv_));
ASSERT_TRUE(decryptor_.Crypt(&buffer[0], buffer.size(), &buffer[0]));
EXPECT_EQ(plaintext_, buffer);
}
TEST_F(AesCtrEncryptorTest, EncryptDecryptString) {
static const char kPlaintext[] = "normal plaintext of random length";
static const char kExpectedCiphertextInHex[] =
"82E3AD1EF90C5CC09EB37F1B9EFBD99016441A1C15123F0777CD57BB993E14DA02";
std::string ciphertext;
ASSERT_TRUE(encryptor_.Crypt(kPlaintext, &ciphertext));
EXPECT_EQ(kExpectedCiphertextInHex,
base::HexEncode(ciphertext.data(), ciphertext.size()));
std::string decrypted;
ASSERT_TRUE(decryptor_.SetIv(iv_));
ASSERT_TRUE(decryptor_.Crypt(ciphertext, &decrypted));
EXPECT_EQ(kPlaintext, decrypted);
}
TEST_F(AesCtrEncryptorTest, 128BitIVBoundaryCaseEncryption) {
// There are four blocks of text in |plaintext_|. The first block should be
// encrypted with IV = kIv128Max64, the subsequent blocks should be encrypted
// with iv 0 to 3.
std::vector<uint8_t> iv_max64(kIv128Max64,
kIv128Max64 + arraysize(kIv128Max64));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor_.Crypt(plaintext_, &encrypted));
std::vector<uint8_t> iv_one_and_three(
kIv128OneAndThree, kIv128OneAndThree + arraysize(kIv128OneAndThree));
encryptor_.UpdateIv();
EXPECT_EQ(iv_one_and_three, encryptor_.iv());
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_max64));
std::vector<uint8_t> encrypted_verify(plaintext_.size(), 0);
ASSERT_TRUE(
encryptor_.Crypt(&plaintext_[0], kAesBlockSize, &encrypted_verify[0]));
std::vector<uint8_t> iv_zero(kIv128Zero, kIv128Zero + arraysize(kIv128Zero));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero));
ASSERT_TRUE(encryptor_.Crypt(&plaintext_[kAesBlockSize], kAesBlockSize * 3,
&encrypted_verify[kAesBlockSize]));
EXPECT_EQ(encrypted, encrypted_verify);
}
TEST_F(AesCtrEncryptorTest, 64BitIvUpdate) {
std::vector<uint8_t> iv_zero(kIv64Zero, kIv64Zero + arraysize(kIv64Zero));
ASSERT_TRUE(encryptor_.InitializeWithIv(key_, iv_zero));
// There are four blocks of text in |plaintext_|, but since iv is 8 bytes,
// iv should only be incremented by one when UpdateIv() is called.
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor_.Crypt(plaintext_, &encrypted));
std::vector<uint8_t> iv_one(kIv64One, kIv64One + arraysize(kIv64One));
encryptor_.UpdateIv();
EXPECT_EQ(iv_one, encryptor_.iv());
}
TEST_F(AesCtrEncryptorTest, GenerateRandomIv) {
const uint8_t kCencIvSize = 8;
std::vector<uint8_t> iv;
ASSERT_TRUE(AesCryptor::GenerateRandomIv(FOURCC_cenc, &iv));
ASSERT_EQ(kCencIvSize, iv.size());
LOG(INFO) << "Random IV: " << base::HexEncode(iv.data(), iv.size());
}
TEST_F(AesCtrEncryptorTest, UnsupportedKeySize) {
std::vector<uint8_t> key(kInvalidKey, kInvalidKey + arraysize(kInvalidKey));
ASSERT_FALSE(encryptor_.InitializeWithIv(key, iv_));
}
TEST_F(AesCtrEncryptorTest, UnsupportedIV) {
std::vector<uint8_t> iv(kInvalidIv, kInvalidIv + arraysize(kInvalidIv));
ASSERT_FALSE(encryptor_.InitializeWithIv(key_, iv));
}
class AesCtrEncryptorSubsampleTest
: public AesCtrEncryptorTest,
public ::testing::WithParamInterface<SubsampleTestCase> {};
TEST_P(AesCtrEncryptorSubsampleTest, NistTestCaseSubsamples) {
const SubsampleTestCase* test_case = &GetParam();
std::vector<uint8_t> encrypted(plaintext_.size(), 0);
for (uint32_t i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32_t len = test_case->subsample_sizes[i];
ASSERT_TRUE(encryptor_.Crypt(&plaintext_[offset], len, &encrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, encryptor_.block_offset());
}
EXPECT_EQ(ciphertext_, encrypted);
ASSERT_TRUE(decryptor_.SetIv(iv_));
std::vector<uint8_t> decrypted(encrypted.size(), 0);
for (uint32_t i = 0, offset = 0; i < test_case->subsample_count; ++i) {
uint32_t len = test_case->subsample_sizes[i];
ASSERT_TRUE(decryptor_.Crypt(&encrypted[offset], len, &decrypted[offset]));
offset += len;
EXPECT_EQ(offset % kAesBlockSize, decryptor_.block_offset());
}
EXPECT_EQ(plaintext_, decrypted);
}
INSTANTIATE_TEST_CASE_P(SubsampleTestCases,
AesCtrEncryptorSubsampleTest,
::testing::ValuesIn(kSubsampleTestCases));
class AesCtrEncryptorIvTest : public ::testing::TestWithParam<IvTestCase> {};
TEST_P(AesCtrEncryptorIvTest, IvTest) {
// Some dummy key and plaintext.
std::vector<uint8_t> key(16, 1);
std::vector<uint8_t> plaintext(kTextSizeInBytes, 3);
std::vector<uint8_t> iv_test(GetParam().iv_test,
GetParam().iv_test + GetParam().iv_size);
std::vector<uint8_t> iv_expected(GetParam().iv_expected,
GetParam().iv_expected + GetParam().iv_size);
AesCtrEncryptor encryptor;
ASSERT_TRUE(encryptor.InitializeWithIv(key, iv_test));
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted));
encryptor.UpdateIv();
EXPECT_EQ(iv_expected, encryptor.iv());
}
INSTANTIATE_TEST_CASE_P(IvTestCases,
AesCtrEncryptorIvTest,
::testing::ValuesIn(kIvTestCases));
class AesCbcTest : public ::testing::Test {
public:
AesCbcTest()
: encryptor_(
new AesCbcEncryptor(kPkcs5Padding, AesCryptor::kUseConstantIv)),
decryptor_(
new AesCbcDecryptor(kPkcs5Padding, AesCryptor::kUseConstantIv)),
key_(kAesKey, kAesKey + arraysize(kAesKey)),
iv_(kAesIv, kAesIv + arraysize(kAesIv)) {}
void TestEncryptDecrypt(const std::vector<uint8_t>& plaintext,
const std::vector<uint8_t>& expected_ciphertext) {
// Test Vector form.
TestEncryptDecryptSeparateBuffers(plaintext, expected_ciphertext);
TestEncryptDecryptInPlace(plaintext, expected_ciphertext);
// Test string form.
std::string plaintext_str(plaintext.begin(), plaintext.end());
std::string expected_ciphertext_str(expected_ciphertext.begin(),
expected_ciphertext.end());
TestEncryptDecryptSeparateBuffers(plaintext_str, expected_ciphertext_str);
TestEncryptDecryptInPlace(plaintext_str, expected_ciphertext_str);
}
protected:
template <class T>
void TestEncryptDecryptSeparateBuffers(const T& plaintext,
const T& expected_ciphertext) {
ASSERT_TRUE(encryptor_->InitializeWithIv(key_, iv_));
ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_));
T encrypted;
ASSERT_TRUE(encryptor_->Crypt(plaintext, &encrypted));
EXPECT_EQ(expected_ciphertext, encrypted);
T decrypted;
ASSERT_TRUE(decryptor_->Crypt(encrypted, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
template <class T>
void TestEncryptDecryptInPlace(const T& plaintext,
const T& expected_ciphertext) {
ASSERT_TRUE(encryptor_->InitializeWithIv(key_, iv_));
ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_));
T buffer(plaintext);
ASSERT_TRUE(encryptor_->Crypt(buffer, &buffer));
EXPECT_EQ(expected_ciphertext, buffer);
ASSERT_TRUE(decryptor_->Crypt(buffer, &buffer));
EXPECT_EQ(plaintext, buffer);
}
std::unique_ptr<AesCbcEncryptor> encryptor_;
std::unique_ptr<AesCbcDecryptor> decryptor_;
std::vector<uint8_t> key_;
std::vector<uint8_t> iv_;
};
TEST_F(AesCbcTest, Aes256CbcPkcs5) {
// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt.
static const uint8_t kAesCbcKey[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4};
static const uint8_t kAesCbcIv[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f};
static const uint8_t kAesCbcPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10};
static const uint8_t kAesCbcCiphertext[] = {
// Block #1
0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,
0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
// Block #2
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,
0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
// Block #3
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf,
0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
// Block #4
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc,
0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b,
// PKCS #5 padding, encrypted.
0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2,
0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44};
key_.assign(kAesCbcKey, kAesCbcKey + arraysize(kAesCbcKey));
iv_.assign(kAesCbcIv, kAesCbcIv + arraysize(kAesCbcIv));
const std::vector<uint8_t> plaintext(
kAesCbcPlaintext, kAesCbcPlaintext + arraysize(kAesCbcPlaintext));
const std::vector<uint8_t> expected_ciphertext(
kAesCbcCiphertext, kAesCbcCiphertext + arraysize(kAesCbcCiphertext));
TestEncryptDecrypt(plaintext, expected_ciphertext);
}
TEST_F(AesCbcTest, Aes128CbcPkcs5) {
const std::string kKey = "128=SixteenBytes";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext =
"Plain text with a g-clef U+1D11E \360\235\204\236";
const std::string kExpectedCiphertextHex =
"D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A"
"C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8";
key_.assign(kKey.begin(), kKey.end());
iv_.assign(kIv.begin(), kIv.end());
const std::vector<uint8_t> plaintext(kPlaintext.begin(), kPlaintext.end());
std::vector<uint8_t> expected_ciphertext;
ASSERT_TRUE(
base::HexStringToBytes(kExpectedCiphertextHex, &expected_ciphertext));
TestEncryptDecrypt(plaintext, expected_ciphertext);
}
TEST_F(AesCbcTest, Aes192CbcPkcs5) {
const std::string kKey = "192bitsIsTwentyFourByte!";
const std::string kIv = "Sweet Sixteen IV";
const std::string kPlaintext = "Small text";
const std::string kExpectedCiphertextHex = "78DE5D7C2714FC5C61346C5416F6C89A";
key_.assign(kKey.begin(), kKey.end());
iv_.assign(kIv.begin(), kIv.end());
const std::vector<uint8_t> plaintext(kPlaintext.begin(), kPlaintext.end());
std::vector<uint8_t> expected_ciphertext;
ASSERT_TRUE(
base::HexStringToBytes(kExpectedCiphertextHex, &expected_ciphertext));
TestEncryptDecrypt(plaintext, expected_ciphertext);
}
TEST_F(AesCbcTest, NoPaddingNoChainAcrossCalls) {
const uint8_t kPlaintext[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};
const uint8_t kCiphertext[] = {
0x77, 0xcd, 0xe9, 0x1f, 0xe6, 0xdf, 0x9c, 0xbc,
0x5d, 0x0c, 0x98, 0xf9, 0x6e, 0xfd, 0x59, 0x0b,
};
std::vector<uint8_t> plaintext(kPlaintext,
kPlaintext + arraysize(kPlaintext));
std::vector<uint8_t> ciphertext(kCiphertext,
kCiphertext + arraysize(kCiphertext));
AesCbcEncryptor encryptor(kNoPadding, AesCryptor::kUseConstantIv);
ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_));
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted));
EXPECT_EQ(ciphertext, encrypted);
ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted));
EXPECT_EQ(ciphertext, encrypted);
AesCbcDecryptor decryptor(kNoPadding, AesCryptor::kUseConstantIv);
ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_));
std::vector<uint8_t> decrypted;
ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST_F(AesCbcTest, NoPaddingChainAcrossCalls) {
const uint8_t kPlaintext[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};
const uint8_t kCiphertext[] = {
0x77, 0xcd, 0xe9, 0x1f, 0xe6, 0xdf, 0x9c, 0xbc,
0x5d, 0x0c, 0x98, 0xf9, 0x6e, 0xfd, 0x59, 0x0b,
};
const uint8_t kCiphertext2[] = {
0xbd, 0xdd, 0xe4, 0x39, 0x52, 0x6f, 0x10, 0x0c,
0x95, 0x45, 0xc2, 0x74, 0xd4, 0xf7, 0xfd, 0x3f,
};
std::vector<uint8_t> plaintext(kPlaintext,
kPlaintext + arraysize(kPlaintext));
std::vector<uint8_t> ciphertext(kCiphertext,
kCiphertext + arraysize(kCiphertext));
std::vector<uint8_t> ciphertext2(kCiphertext2,
kCiphertext2 + arraysize(kCiphertext2));
AesCbcEncryptor encryptor(kNoPadding, AesCryptor::kDontUseConstantIv);
ASSERT_TRUE(encryptor.InitializeWithIv(key_, iv_));
std::vector<uint8_t> encrypted;
ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted));
EXPECT_EQ(ciphertext, encrypted);
// If run encrypt again, the result will be different.
ASSERT_TRUE(encryptor.Crypt(plaintext, &encrypted));
EXPECT_NE(ciphertext, ciphertext2);
EXPECT_EQ(ciphertext2, encrypted);
AesCbcDecryptor decryptor(kNoPadding, AesCryptor::kDontUseConstantIv);
ASSERT_TRUE(decryptor.InitializeWithIv(key_, iv_));
std::vector<uint8_t> decrypted;
ASSERT_TRUE(decryptor.Crypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
// If run decrypt on ciphertext2 now, it will return the original plaintext.
ASSERT_TRUE(decryptor.Crypt(ciphertext2, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST_F(AesCbcTest, UnsupportedKeySize) {
EXPECT_FALSE(encryptor_->InitializeWithIv(std::vector<uint8_t>(15, 0), iv_));
EXPECT_FALSE(decryptor_->InitializeWithIv(std::vector<uint8_t>(15, 0), iv_));
}
TEST_F(AesCbcTest, VariousIvSize) {
EXPECT_FALSE(encryptor_->InitializeWithIv(key_, std::vector<uint8_t>(14, 0)));
EXPECT_FALSE(decryptor_->InitializeWithIv(key_, std::vector<uint8_t>(7, 0)));
EXPECT_FALSE(decryptor_->InitializeWithIv(key_, std::vector<uint8_t>(1, 0)));
EXPECT_TRUE(decryptor_->InitializeWithIv(key_, std::vector<uint8_t>(8, 0)));
}
TEST_F(AesCbcTest, Pkcs5CipherTextNotMultipleOfBlockSize) {
std::string plaintext;
ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_));
EXPECT_FALSE(decryptor_->Crypt("1", &plaintext));
}
TEST_F(AesCbcTest, Pkcs5CipherTextEmpty) {
std::string plaintext;
ASSERT_TRUE(decryptor_->InitializeWithIv(key_, iv_));
EXPECT_FALSE(decryptor_->Crypt("", &plaintext));
}
struct CbcTestCase {
CbcPaddingScheme padding_scheme;
const char* plaintext_hex;
const char* expected_ciphertext_hex;
};
const CbcTestCase kCbcTestCases[] = {
// No padding with zero bytes.
{kNoPadding, "", ""},
{kNoPadding,
"6bc1bee22e409f96e93d7e117393172a6bc1bee22e409f96e93d7e117393172a",
"77cde91fe6df9cbc5d0c98f96efd590bbddde439526f100c9545c274d4f7fd3f"},
{kNoPadding,
"6bc1bee22e409f96e93d7e117393172a6bc1bee22e409f96e93d7e117393172a1234",
"77cde91fe6df9cbc5d0c98f96efd590bbddde439526f100c9545c274d4f7fd3f1234"},
// Pkcs5 padding with zero bytes.
{kPkcs5Padding, "", "f6a3569dea3cda208eb3d5792942612b"},
// Cts Padding with zero bytes.
{kCtsPadding, "", ""},
// Cts Padding with no encrypted blocks.
{kCtsPadding, "3f593e7a204a5e70f2", "3f593e7a204a5e70f2"},
// Cts padding with residual bytes.
{kCtsPadding,
"e0818f2dc7caaa9edf09285a0c1fca98d39e9b08a47ab6911c4bbdf27d94"
"f917cdffc9ebb307141f23b0d3921e0ed7f86eb09381286f8e7a4f",
"b40a0b8704c74e22e8030cad6f272b34ace54cc7c9c64b2018bbcf23df018"
"39b14899441cf74a9fb2f2b229a609146f31be8e8a826eb6e857e"},
// Cts padding with even blocks.
{kCtsPadding,
"3f593e7a204a5e70f2814dca05aa49d36f2daddc9a24e0515802c539efc3"
"1094b3ad6c26d6f5c0e387545ce6a4c2c14d",
"5f32cd0504b27b25ee04090d88d37d340c9c0a9fa50b05358b98fad4302ea"
"480148d8aa091f4e7d186a7223df153f6f7"},
// Cts padding with one block and a half.
{kCtsPadding, "3f593e7a204a5e70f2814dca05aa49d36f2daddc9a4302ea",
"623fc113fe02ce85628deb58d652c6995f32cd0504b27b25"},
};
class AesCbcCryptorVerificationTest
: public AesCbcTest,
public ::testing::WithParamInterface<CbcTestCase> {};
TEST_P(AesCbcCryptorVerificationTest, EncryptDecryptTest) {
encryptor_.reset(new AesCbcEncryptor(GetParam().padding_scheme,
AesCryptor::kUseConstantIv));
decryptor_.reset(new AesCbcDecryptor(GetParam().padding_scheme,
AesCryptor::kUseConstantIv));
std::vector<uint8_t> plaintext;
std::string plaintext_hex(GetParam().plaintext_hex);
if (!plaintext_hex.empty())
ASSERT_TRUE(base::HexStringToBytes(plaintext_hex, &plaintext));
std::vector<uint8_t> expected_ciphertext;
std::string expected_ciphertext_hex(GetParam().expected_ciphertext_hex);
if (!expected_ciphertext_hex.empty()) {
ASSERT_TRUE(base::HexStringToBytes(GetParam().expected_ciphertext_hex,
&expected_ciphertext));
}
TestEncryptDecrypt(plaintext, expected_ciphertext);
}
INSTANTIATE_TEST_CASE_P(CbcTestCases,
AesCbcCryptorVerificationTest,
::testing::ValuesIn(kCbcTestCases));
} // namespace media
} // namespace shaka