shaka-packager/packager/media/codecs/vp9_parser.cc

599 lines
20 KiB
C++

// Copyright 2015 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/codecs/vp9_parser.h"
#include "packager/base/logging.h"
#include "packager/media/base/bit_reader.h"
#include "packager/media/base/rcheck.h"
namespace shaka {
namespace media {
namespace {
const uint32_t VP9_FRAME_MARKER = 2;
const uint32_t VP9_SYNC_CODE = 0x498342;
const uint32_t REFS_PER_FRAME = 3;
const uint32_t REF_FRAMES_LOG2 = 3;
const uint32_t REF_FRAMES = (1 << REF_FRAMES_LOG2);
const uint32_t FRAME_CONTEXTS_LOG2 = 2;
const uint32_t MAX_REF_LF_DELTAS = 4;
const uint32_t MAX_MODE_LF_DELTAS = 2;
const uint32_t QINDEX_BITS = 8;
const uint32_t MAX_SEGMENTS = 8;
const uint32_t SEG_TREE_PROBS = (MAX_SEGMENTS - 1);
const uint32_t PREDICTION_PROBS = 3;
const uint32_t SEG_LVL_MAX = 4;
const uint32_t MI_SIZE_LOG2 = 3;
const uint32_t MI_BLOCK_SIZE_LOG2 = (6 - MI_SIZE_LOG2); // 64 = 2^6
const uint32_t MIN_TILE_WIDTH_B64 = 4;
const uint32_t MAX_TILE_WIDTH_B64 = 64;
const bool SEG_FEATURE_DATA_SIGNED[SEG_LVL_MAX] = {true, true, false, false};
const uint32_t SEG_FEATURE_DATA_MAX_BITS[SEG_LVL_MAX] = {8, 6, 2, 0};
enum VpxColorSpace {
VPX_COLOR_SPACE_UNKNOWN = 0,
VPX_COLOR_SPACE_BT_601 = 1,
VPX_COLOR_SPACE_BT_709 = 2,
VPX_COLOR_SPACE_SMPTE_170 = 3,
VPX_COLOR_SPACE_SMPTE_240 = 4,
VPX_COLOR_SPACE_BT_2020 = 5,
VPX_COLOR_SPACE_RESERVED = 6,
VPX_COLOR_SPACE_SRGB = 7,
};
uint32_t RoundupShift(uint32_t value, uint32_t n) {
return (value + (1 << n) - 1) >> n;
}
// Number of MI-units (8*8).
uint32_t GetNumMiUnits(uint32_t pixels) {
return RoundupShift(pixels, MI_SIZE_LOG2);
}
// Number of sb64 (64x64) blocks per mi_units.
uint32_t GetNumBlocks(uint32_t mi_units) {
return RoundupShift(mi_units, MI_BLOCK_SIZE_LOG2);
}
uint32_t GetMinLog2TileCols(uint32_t sb64_cols) {
uint32_t min_log2 = 0;
while ((MAX_TILE_WIDTH_B64 << min_log2) < sb64_cols)
++min_log2;
return min_log2;
}
uint32_t GetMaxLog2TileCols(uint32_t sb64_cols) {
uint32_t max_log2 = 1;
while ((sb64_cols >> max_log2) >= MIN_TILE_WIDTH_B64)
++max_log2;
return max_log2 - 1;
}
void GetTileNBits(uint32_t mi_cols,
uint32_t* min_log2_tile_cols,
uint32_t* max_log2_tile_cols) {
const uint32_t sb64_cols = GetNumBlocks(mi_cols);
*min_log2_tile_cols = GetMinLog2TileCols(sb64_cols);
*max_log2_tile_cols = GetMaxLog2TileCols(sb64_cols);
CHECK_LE(*min_log2_tile_cols, *max_log2_tile_cols);
}
// Parse superframe index if it is a superframe. Fill |vpx_frames| with the
// frames information, which contains the sizes of the frames indicated in
// superframe index if it is a superframe; otherwise it should contain one
// single frame with |data_size| as frame size.
bool ParseIfSuperframeIndex(const uint8_t* data,
size_t data_size,
std::vector<VPxFrameInfo>* vpx_frames) {
vpx_frames->clear();
uint8_t superframe_marker = data[data_size - 1];
VPxFrameInfo vpx_frame;
if ((superframe_marker & 0xe0) != 0xc0) {
// This is not a super frame. There should be only one frame.
vpx_frame.frame_size = data_size;
vpx_frames->push_back(vpx_frame);
return true;
}
const size_t num_frames = (superframe_marker & 0x07) + 1;
const size_t frame_size_length = ((superframe_marker >> 3) & 0x03) + 1;
// Two maker bytes + frame sizes.
const size_t index_size = 2 + num_frames * frame_size_length;
if (data_size < index_size) {
LOG(ERROR) << "This chunk is marked as having a superframe index but "
"doesn't have enough data for it.";
return false;
}
const uint8_t superframe_marker2 = data[data_size - index_size];
if (superframe_marker2 != superframe_marker) {
LOG(ERROR) << "This chunk is marked as having a superframe index but "
"doesn't have the matching marker byte at the front of the "
"index.";
return false;
}
VLOG(3) << "Superframe num_frames=" << num_frames
<< " frame_size_length=" << frame_size_length;
data += data_size - index_size + 1;
size_t total_frame_sizes = 0;
for (size_t i = 0; i < num_frames; ++i) {
vpx_frame.frame_size = 0;
for (size_t i = 0; i < frame_size_length; ++i) {
vpx_frame.frame_size |= *data << (i * 8);
++data;
}
total_frame_sizes += vpx_frame.frame_size;
vpx_frames->push_back(vpx_frame);
}
if (total_frame_sizes + index_size != data_size) {
LOG(ERROR) << "Data size (" << data_size
<< ") does not match with sum of frame sizes ("
<< total_frame_sizes << ") + index_size (" << index_size << ")";
return false;
}
return true;
}
bool ReadProfile(BitReader* reader, VPCodecConfigurationRecord* codec_config) {
uint8_t bit[2];
RCHECK(reader->ReadBits(1, &bit[0]));
RCHECK(reader->ReadBits(1, &bit[1]));
uint8_t profile = bit[0] | (bit[1] << 1);
if (profile == 3) {
bool reserved;
RCHECK(reader->ReadBits(1, &reserved));
RCHECK(!reserved);
}
codec_config->set_profile(profile);
return true;
}
bool ReadSyncCode(BitReader* reader) {
uint32_t sync_code;
RCHECK(reader->ReadBits(24, &sync_code));
return sync_code == VP9_SYNC_CODE;
}
void SetColorAttributes(uint8_t bit_depth,
uint8_t color_space,
VPCodecConfigurationRecord* codec_config) {
switch (color_space) {
case VPX_COLOR_SPACE_UNKNOWN:
codec_config->set_color_primaries(AVCOL_PRI_UNSPECIFIED);
codec_config->set_matrix_coefficients(AVCOL_SPC_UNSPECIFIED);
codec_config->set_transfer_characteristics(AVCOL_TRC_UNSPECIFIED);
break;
case VPX_COLOR_SPACE_BT_601:
// Don't know if it is 525 line or 625 line.
codec_config->set_color_primaries(AVCOL_PRI_UNSPECIFIED);
codec_config->set_matrix_coefficients(AVCOL_SPC_UNSPECIFIED);
codec_config->set_transfer_characteristics(AVCOL_TRC_SMPTE170M);
break;
case VPX_COLOR_SPACE_BT_709:
codec_config->set_color_primaries(AVCOL_PRI_BT709);
codec_config->set_matrix_coefficients(AVCOL_SPC_BT709);
codec_config->set_transfer_characteristics(AVCOL_TRC_BT709);
break;
case VPX_COLOR_SPACE_SMPTE_170:
codec_config->set_color_primaries(AVCOL_PRI_SMPTE170M);
codec_config->set_matrix_coefficients(AVCOL_SPC_SMPTE170M);
codec_config->set_transfer_characteristics(AVCOL_TRC_SMPTE170M);
break;
case VPX_COLOR_SPACE_SMPTE_240:
codec_config->set_color_primaries(AVCOL_PRI_SMPTE240M);
codec_config->set_matrix_coefficients(AVCOL_SPC_SMPTE240M);
codec_config->set_transfer_characteristics(AVCOL_TRC_SMPTE240M);
break;
case VPX_COLOR_SPACE_BT_2020:
codec_config->set_color_primaries(AVCOL_PRI_BT2020);
// VP9 does not specify if it is in the form of “constant luminance” or
// “non-constant luminance”. As such, application should rely on the
// signaling outside of VP9 bitstream. If there is no such signaling,
// application may assume non-constant luminance for BT.2020.
codec_config->set_matrix_coefficients(AVCOL_SPC_BT2020_NCL);
switch (bit_depth) {
case 10:
codec_config->set_transfer_characteristics(AVCOL_TRC_BT2020_10);
break;
case 12:
codec_config->set_transfer_characteristics(AVCOL_TRC_BT2020_12);
break;
default:
codec_config->set_transfer_characteristics(AVCOL_TRC_UNSPECIFIED);
break;
}
break;
case VPX_COLOR_SPACE_SRGB:
codec_config->set_color_primaries(AVCOL_PRI_UNSPECIFIED);
codec_config->set_matrix_coefficients(AVCOL_SPC_RGB);
codec_config->set_transfer_characteristics(AVCOL_TRC_UNSPECIFIED);
break;
default:
LOG(WARNING) << "Unknown color space: " << static_cast<int>(color_space);
codec_config->set_color_primaries(AVCOL_PRI_UNSPECIFIED);
codec_config->set_matrix_coefficients(AVCOL_SPC_UNSPECIFIED);
codec_config->set_transfer_characteristics(AVCOL_TRC_UNSPECIFIED);
break;
}
}
VPCodecConfigurationRecord::ChromaSubsampling GetChromaSubsampling(
uint8_t subsampling) {
switch (subsampling) {
case 0:
return VPCodecConfigurationRecord::CHROMA_444;
case 1:
return VPCodecConfigurationRecord::CHROMA_440;
case 2:
return VPCodecConfigurationRecord::CHROMA_422;
case 3:
// VP9 assumes that chrome samples are collocated with luma samples if
// there is no explicit signaling outside of VP9 bitstream.
return VPCodecConfigurationRecord::CHROMA_420_COLLOCATED_WITH_LUMA;
default:
LOG(WARNING) << "Unexpected chroma subsampling value: "
<< static_cast<int>(subsampling);
return VPCodecConfigurationRecord::CHROMA_420_COLLOCATED_WITH_LUMA;
}
}
bool ReadBitDepthAndColorSpace(BitReader* reader,
VPCodecConfigurationRecord* codec_config) {
uint8_t bit_depth = 8;
if (codec_config->profile() >= 2) {
bool use_vpx_bits_12;
RCHECK(reader->ReadBits(1, &use_vpx_bits_12));
bit_depth = use_vpx_bits_12 ? 12 : 10;
}
codec_config->set_bit_depth(bit_depth);
uint8_t color_space;
RCHECK(reader->ReadBits(3, &color_space));
SetColorAttributes(bit_depth, color_space, codec_config);
bool yuv_full_range = false;
auto chroma_subsampling = VPCodecConfigurationRecord::CHROMA_444;
if (color_space != VPX_COLOR_SPACE_SRGB) {
RCHECK(reader->ReadBits(1, &yuv_full_range));
if (codec_config->profile() & 1) {
uint8_t subsampling;
RCHECK(reader->ReadBits(2, &subsampling));
chroma_subsampling = GetChromaSubsampling(subsampling);
if (chroma_subsampling ==
VPCodecConfigurationRecord::CHROMA_420_COLLOCATED_WITH_LUMA) {
LOG(ERROR) << "4:2:0 color not supported in profile "
<< static_cast<int>(codec_config->profile());
return false;
}
bool reserved;
RCHECK(reader->ReadBits(1, &reserved));
RCHECK(!reserved);
} else {
chroma_subsampling =
VPCodecConfigurationRecord::CHROMA_420_COLLOCATED_WITH_LUMA;
}
} else {
// Assume 4:4:4 for colorspace SRGB.
chroma_subsampling = VPCodecConfigurationRecord::CHROMA_444;
if (codec_config->profile() & 1) {
bool reserved;
RCHECK(reader->ReadBits(1, &reserved));
RCHECK(!reserved);
} else {
LOG(ERROR) << "4:4:4 color not supported in profile 0 or 2.";
return false;
}
}
codec_config->set_video_full_range_flag(yuv_full_range);
codec_config->SetChromaSubsampling(chroma_subsampling);
VLOG(3) << "\n profile " << static_cast<int>(codec_config->profile())
<< "\n bit depth " << static_cast<int>(codec_config->bit_depth())
<< "\n matrix coefficients "
<< static_cast<int>(codec_config->matrix_coefficients())
<< "\n full_range "
<< static_cast<int>(codec_config->video_full_range_flag())
<< "\n chroma subsampling "
<< static_cast<int>(codec_config->chroma_subsampling());
return true;
}
bool ReadFrameSize(BitReader* reader, uint32_t* width, uint32_t* height) {
RCHECK(reader->ReadBits(16, width));
*width += 1; // Off by 1.
RCHECK(reader->ReadBits(16, height));
*height += 1; // Off by 1.
return true;
}
bool ReadDisplayFrameSize(BitReader* reader,
uint32_t* display_width,
uint32_t* display_height) {
bool has_display_size;
RCHECK(reader->ReadBits(1, &has_display_size));
if (has_display_size)
RCHECK(ReadFrameSize(reader, display_width, display_height));
return true;
}
bool ReadFrameSizes(BitReader* reader, uint32_t* width, uint32_t* height) {
uint32_t new_width;
uint32_t new_height;
RCHECK(ReadFrameSize(reader, &new_width, &new_height));
if (new_width != *width) {
VLOG(1) << "Width updates from " << *width << " to " << new_width;
*width = new_width;
}
if (new_height != *height) {
VLOG(1) << "Height updates from " << *height << " to " << new_height;
*height = new_height;
}
uint32_t display_width = *width;
uint32_t display_height = *height;
RCHECK(ReadDisplayFrameSize(reader, &display_width, &display_height));
return true;
}
bool ReadFrameSizesWithRefs(BitReader* reader,
uint32_t* width,
uint32_t* height) {
bool found = false;
for (uint32_t i = 0; i < REFS_PER_FRAME; ++i) {
RCHECK(reader->ReadBits(1, &found));
if (found)
break;
}
if (!found) {
RCHECK(ReadFrameSizes(reader, width, height));
} else {
uint32_t display_width;
uint32_t display_height;
RCHECK(ReadDisplayFrameSize(reader, &display_width, &display_height));
}
return true;
}
bool ReadLoopFilter(BitReader* reader) {
RCHECK(reader->SkipBits(9)); // filter_evel, sharness_level
bool mode_ref_delta_enabled;
RCHECK(reader->ReadBits(1, &mode_ref_delta_enabled));
if (!mode_ref_delta_enabled)
return true;
bool mode_ref_delta_update;
RCHECK(reader->ReadBits(1, &mode_ref_delta_update));
if (!mode_ref_delta_update)
return true;
for (uint32_t i = 0; i < MAX_REF_LF_DELTAS + MAX_MODE_LF_DELTAS; ++i)
RCHECK(reader->SkipBitsConditional(true, 6 + 1));
return true;
}
bool ReadQuantization(BitReader* reader) {
RCHECK(reader->SkipBits(QINDEX_BITS));
// Skip delta_q bits.
for (uint32_t i = 0; i < 3; ++i)
RCHECK(reader->SkipBitsConditional(true, 4 + 1));
return true;
}
bool ReadSegmentation(BitReader* reader) {
bool enabled;
RCHECK(reader->ReadBits(1, &enabled));
if (!enabled)
return true;
bool update_map;
RCHECK(reader->ReadBits(1, &update_map));
if (update_map) {
for (uint32_t i = 0; i < SEG_TREE_PROBS; ++i)
RCHECK(reader->SkipBitsConditional(true, 8));
bool temporal_update;
RCHECK(reader->ReadBits(1, &temporal_update));
if (temporal_update) {
for (uint32_t j = 0; j < PREDICTION_PROBS; ++j)
RCHECK(reader->SkipBitsConditional(true, 8));
}
}
bool update_data;
RCHECK(reader->ReadBits(1, &update_data));
if (update_data) {
RCHECK(reader->SkipBits(1)); // abs_delta
for (uint32_t i = 0; i < MAX_SEGMENTS; ++i) {
for (uint32_t j = 0; j < SEG_LVL_MAX; ++j) {
bool feature_enabled;
RCHECK(reader->ReadBits(1, &feature_enabled));
if (feature_enabled) {
RCHECK(reader->SkipBits(SEG_FEATURE_DATA_MAX_BITS[j]));
if (SEG_FEATURE_DATA_SIGNED[j])
RCHECK(reader->SkipBits(1)); // signness
}
}
}
}
return true;
}
bool ReadTileInfo(uint32_t width, BitReader* reader) {
uint32_t mi_cols = GetNumMiUnits(width);
uint32_t min_log2_tile_cols;
uint32_t max_log2_tile_cols;
GetTileNBits(mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
uint32_t max_ones = max_log2_tile_cols - min_log2_tile_cols;
uint32_t log2_tile_cols = min_log2_tile_cols;
while (max_ones--) {
bool has_more;
RCHECK(reader->ReadBits(1, &has_more));
if (!has_more)
break;
++log2_tile_cols;
}
RCHECK(log2_tile_cols <= 6);
RCHECK(reader->SkipBitsConditional(true, 1)); // log2_tile_rows
return true;
}
} // namespace
VP9Parser::VP9Parser() : width_(0), height_(0) {}
VP9Parser::~VP9Parser() {}
bool VP9Parser::Parse(const uint8_t* data,
size_t data_size,
std::vector<VPxFrameInfo>* vpx_frames) {
DCHECK(data);
DCHECK(vpx_frames);
RCHECK(ParseIfSuperframeIndex(data, data_size, vpx_frames));
for (auto& vpx_frame : *vpx_frames) {
VLOG(4) << "process frame with size " << vpx_frame.frame_size;
BitReader reader(data, vpx_frame.frame_size);
uint8_t frame_marker;
RCHECK(reader.ReadBits(2, &frame_marker));
RCHECK(frame_marker == VP9_FRAME_MARKER);
RCHECK(ReadProfile(&reader, writable_codec_config()));
bool show_existing_frame;
RCHECK(reader.ReadBits(1, &show_existing_frame));
if (show_existing_frame) {
RCHECK(reader.SkipBits(3)); // ref_frame_index
// End of current frame data. There should be no more bytes available.
RCHECK(reader.bits_available() < 8);
vpx_frame.is_keyframe = false;
vpx_frame.uncompressed_header_size = vpx_frame.frame_size;
vpx_frame.width = width_;
vpx_frame.height = height_;
continue;
}
bool is_interframe;
RCHECK(reader.ReadBits(1, &is_interframe));
vpx_frame.is_keyframe = !is_interframe;
bool show_frame;
RCHECK(reader.ReadBits(1, &show_frame));
bool error_resilient_mode;
RCHECK(reader.ReadBits(1, &error_resilient_mode));
if (vpx_frame.is_keyframe) {
RCHECK(ReadSyncCode(&reader));
RCHECK(ReadBitDepthAndColorSpace(&reader, writable_codec_config()));
RCHECK(ReadFrameSizes(&reader, &width_, &height_));
} else {
bool intra_only = false;
if (!show_frame)
RCHECK(reader.ReadBits(1, &intra_only));
if (!error_resilient_mode)
RCHECK(reader.SkipBits(2)); // reset_frame_context
if (intra_only) {
RCHECK(ReadSyncCode(&reader));
if (codec_config().profile() > 0) {
RCHECK(ReadBitDepthAndColorSpace(&reader, writable_codec_config()));
} else {
// NOTE: The intra-only frame header does not include the
// specification of either the color format or color sub-sampling in
// profile 0. VP9 specifies that the default color format should be
// YUV 4:2:0 in this case (normative).
writable_codec_config()->SetChromaSubsampling(
VPCodecConfigurationRecord::CHROMA_420_COLLOCATED_WITH_LUMA);
writable_codec_config()->set_bit_depth(8);
}
RCHECK(reader.SkipBits(REF_FRAMES)); // refresh_frame_flags
RCHECK(ReadFrameSizes(&reader, &width_, &height_));
} else {
RCHECK(reader.SkipBits(REF_FRAMES)); // refresh_frame_flags
RCHECK(reader.SkipBits(REFS_PER_FRAME * (REF_FRAMES_LOG2 + 1)));
// TODO(kqyang): We may need to actually build the refs to extract the
// correct width and height for the current frame. The width will be
// used later in ReadTileInfo.
RCHECK(ReadFrameSizesWithRefs(&reader, &width_, &height_));
RCHECK(reader.SkipBits(1)); // allow_high_precision_mv
bool interp_filter;
RCHECK(reader.ReadBits(1, &interp_filter));
if (!interp_filter)
RCHECK(reader.SkipBits(2)); // more interp_filter
}
}
if (!error_resilient_mode) {
RCHECK(reader.SkipBits(1)); // refresh_frame_context
RCHECK(reader.SkipBits(1)); // frame_parallel_decoding_mode
}
RCHECK(reader.SkipBits(FRAME_CONTEXTS_LOG2)); // frame_context_idx
VLOG(4) << "bits read before ReadLoopFilter: " << reader.bit_position();
RCHECK(ReadLoopFilter(&reader));
RCHECK(ReadQuantization(&reader));
RCHECK(ReadSegmentation(&reader));
RCHECK(ReadTileInfo(width_, &reader));
uint16_t header_size;
RCHECK(reader.ReadBits(16, &header_size));
vpx_frame.uncompressed_header_size =
vpx_frame.frame_size - reader.bits_available() / 8;
vpx_frame.width = width_;
vpx_frame.height = height_;
VLOG(3) << "\n frame_size: " << vpx_frame.frame_size
<< "\n uncompressed_header_size: "
<< vpx_frame.uncompressed_header_size
<< "\n bits read: " << reader.bit_position()
<< "\n header_size: " << header_size;
RCHECK(header_size > 0);
RCHECK(header_size * 8u <= reader.bits_available());
data += vpx_frame.frame_size;
}
return true;
}
bool VP9Parser::IsKeyframe(const uint8_t* data, size_t data_size) {
BitReader reader(data, data_size);
uint8_t frame_marker;
RCHECK(reader.ReadBits(2, &frame_marker));
RCHECK(frame_marker == VP9_FRAME_MARKER);
VPCodecConfigurationRecord codec_config;
RCHECK(ReadProfile(&reader, &codec_config));
bool show_existing_frame;
RCHECK(reader.ReadBits(1, &show_existing_frame));
if (show_existing_frame)
return false;
bool is_interframe;
RCHECK(reader.ReadBits(1, &is_interframe));
if (is_interframe)
return false;
RCHECK(reader.SkipBits(2)); // show_frame, error_resilient_mode.
RCHECK(ReadSyncCode(&reader));
return true;
}
} // namespace media
} // namespace shaka