shaka-packager/tools/memory_watcher/memory_hook.cc

563 lines
19 KiB
C++

// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Static class for hooking Win32 API routines.
// Some notes about how to hook Memory Allocation Routines in Windows.
//
// For our purposes we do not hook the libc routines. There are two
// reasons for this. First, the libc routines all go through HeapAlloc
// anyway. So, it's redundant to log both HeapAlloc and malloc.
// Second, it can be tricky to hook in both static and dynamic linkages
// of libc.
#include <windows.h>
#include "memory_hook.h"
#include "memory_watcher.h"
#include "preamble_patcher.h"
// Calls GetProcAddress, but casts to the correct type.
#define GET_PROC_ADDRESS(hmodule, name) \
( (Type_##name)(::GetProcAddress(hmodule, #name)) )
// Macro to declare Patch functions.
#define DECLARE_PATCH(name) Patch<Type_##name> patch_##name
// Macro to install Patch functions.
#define INSTALL_PATCH(name) do { \
patch_##name.set_original(GET_PROC_ADDRESS(hkernel32, ##name)); \
patch_##name.Install(&Perftools_##name); \
} while (0)
// Macro to install Patch functions.
#define INSTALL_NTDLLPATCH(name) do { \
patch_##name.set_original(GET_PROC_ADDRESS(hntdll, ##name)); \
patch_##name.Install(&Perftools_##name); \
} while (0)
// Macro to uninstall Patch functions.
#define UNINSTALL_PATCH(name) patch_##name.Uninstall();
// Windows APIs to be hooked
// HeapAlloc routines
typedef HANDLE (WINAPI *Type_HeapCreate)(DWORD flOptions,
SIZE_T dwInitialSize,
SIZE_T dwMaximumSize);
typedef BOOL (WINAPI *Type_HeapDestroy)(HANDLE hHeap);
typedef LPVOID (WINAPI *Type_HeapAlloc)(HANDLE hHeap, DWORD dwFlags,
DWORD_PTR dwBytes);
typedef LPVOID (WINAPI *Type_HeapReAlloc)(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem, SIZE_T dwBytes);
typedef BOOL (WINAPI *Type_HeapFree)(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem);
// GlobalAlloc routines
typedef HGLOBAL (WINAPI *Type_GlobalAlloc)(UINT uFlags, SIZE_T dwBytes);
typedef HGLOBAL (WINAPI *Type_GlobalReAlloc)(HGLOBAL hMem, SIZE_T dwBytes,
UINT uFlags);
typedef HGLOBAL (WINAPI *Type_GlobalFree)(HGLOBAL hMem);
// LocalAlloc routines
typedef HLOCAL (WINAPI *Type_LocalAlloc)(UINT uFlags, SIZE_T uBytes);
typedef HLOCAL (WINAPI *Type_LocalReAlloc)(HLOCAL hMem, SIZE_T uBytes,
UINT uFlags);
typedef HLOCAL (WINAPI *Type_LocalFree)(HLOCAL hMem);
// A Windows-API equivalent of mmap and munmap, for "anonymous regions"
typedef LPVOID (WINAPI *Type_VirtualAllocEx)(HANDLE process, LPVOID address,
SIZE_T size, DWORD type,
DWORD protect);
typedef BOOL (WINAPI *Type_VirtualFreeEx)(HANDLE process, LPVOID address,
SIZE_T size, DWORD type);
// A Windows-API equivalent of mmap and munmap, for actual files
typedef LPVOID (WINAPI *Type_MapViewOfFile)(HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap);
typedef LPVOID (WINAPI *Type_MapViewOfFileEx)(HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap,
LPVOID lpBaseAddress);
typedef BOOL (WINAPI *Type_UnmapViewOfFile)(LPVOID lpBaseAddress);
typedef DWORD (WINAPI *Type_NtUnmapViewOfSection)(HANDLE process,
LPVOID lpBaseAddress);
// Patch is a template for keeping the pointer to the original
// hooked routine, the function to call when hooked, and the
// stub routine which is patched.
template<class T>
class Patch {
public:
// Constructor. Does not hook the function yet.
Patch<T>()
: original_function_(NULL),
patch_function_(NULL),
stub_function_(NULL) {
}
// Destructor. Unhooks the function if it has been hooked.
~Patch<T>() {
Uninstall();
}
// Patches original function with func.
// Must have called set_original to set the original function.
void Install(T func) {
patch_function_ = func;
CHECK(patch_function_ != NULL);
CHECK(original_function_ != NULL);
CHECK(stub_function_ == NULL);
CHECK(sidestep::SIDESTEP_SUCCESS ==
sidestep::PreamblePatcher::Patch(original_function_,
patch_function_, &stub_function_));
}
// Un-patches the function.
void Uninstall() {
if (stub_function_)
sidestep::PreamblePatcher::Unpatch(original_function_,
patch_function_, stub_function_);
stub_function_ = NULL;
}
// Set the function to be patched.
void set_original(T original) { original_function_ = original; }
// Get the original function being patched.
T original() { return original_function_; }
// Get the patched function. (e.g. the replacement function)
T patched() { return patch_function_; }
// Access to the stub for calling the original function
// while it is patched.
T operator()() {
DCHECK(stub_function_);
return stub_function_;
}
private:
// The function that we plan to patch.
T original_function_;
// The function to replace the original with.
T patch_function_;
// To unpatch, we also need to keep around a "stub" that points to the
// pre-patched Windows function.
T stub_function_;
};
// All Windows memory-allocation routines call through to one of these.
DECLARE_PATCH(HeapCreate);
DECLARE_PATCH(HeapDestroy);
DECLARE_PATCH(HeapAlloc);
DECLARE_PATCH(HeapReAlloc);
DECLARE_PATCH(HeapFree);
DECLARE_PATCH(VirtualAllocEx);
DECLARE_PATCH(VirtualFreeEx);
DECLARE_PATCH(MapViewOfFile);
DECLARE_PATCH(MapViewOfFileEx);
DECLARE_PATCH(UnmapViewOfFile);
DECLARE_PATCH(GlobalAlloc);
DECLARE_PATCH(GlobalReAlloc);
DECLARE_PATCH(GlobalFree);
DECLARE_PATCH(LocalAlloc);
DECLARE_PATCH(LocalReAlloc);
DECLARE_PATCH(LocalFree);
DECLARE_PATCH(NtUnmapViewOfSection);
// Our replacement functions.
static HANDLE WINAPI Perftools_HeapCreate(DWORD flOptions,
SIZE_T dwInitialSize,
SIZE_T dwMaximumSize) {
if (dwInitialSize > 4096)
dwInitialSize = 4096;
return patch_HeapCreate()(flOptions, dwInitialSize, dwMaximumSize);
}
static BOOL WINAPI Perftools_HeapDestroy(HANDLE hHeap) {
return patch_HeapDestroy()(hHeap);
}
static LPVOID WINAPI Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags,
DWORD_PTR dwBytes) {
LPVOID rv = patch_HeapAlloc()(hHeap, dwFlags, dwBytes);
MemoryHook::hook()->OnTrack(hHeap, reinterpret_cast<int32>(rv), dwBytes);
return rv;
}
static BOOL WINAPI Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem) {
size_t size = 0;
if (lpMem != 0) {
size = HeapSize(hHeap, 0, lpMem); // Will crash if lpMem is 0.
// Note: size could be 0; HeapAlloc does allocate 0 length buffers.
}
MemoryHook::hook()->OnUntrack(hHeap, reinterpret_cast<int32>(lpMem), size);
return patch_HeapFree()(hHeap, dwFlags, lpMem);
}
static LPVOID WINAPI Perftools_HeapReAlloc(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem, SIZE_T dwBytes) {
// Don't call realloc, but instead do a free/malloc. The problem is that
// the builtin realloc may either expand a buffer, or it may simply
// just call free/malloc. If so, we will already have tracked the new
// block via Perftools_HeapAlloc.
LPVOID rv = Perftools_HeapAlloc(hHeap, dwFlags, dwBytes);
DCHECK_EQ((HEAP_REALLOC_IN_PLACE_ONLY & dwFlags), 0);
// If there was an old buffer, now copy the data to the new buffer.
if (lpMem != 0) {
size_t size = HeapSize(hHeap, 0, lpMem);
if (size > dwBytes)
size = dwBytes;
// Note: size could be 0; HeapAlloc does allocate 0 length buffers.
memcpy(rv, lpMem, size);
Perftools_HeapFree(hHeap, dwFlags, lpMem);
}
return rv;
}
static LPVOID WINAPI Perftools_VirtualAllocEx(HANDLE process, LPVOID address,
SIZE_T size, DWORD type,
DWORD protect) {
bool already_committed = false;
if (address != NULL) {
MEMORY_BASIC_INFORMATION info;
CHECK(VirtualQuery(address, &info, sizeof(info)));
if (info.State & MEM_COMMIT) {
already_committed = true;
CHECK(size >= info.RegionSize);
}
}
bool reserving = (address == NULL) || (type & MEM_RESERVE);
bool committing = !already_committed && (type & MEM_COMMIT);
LPVOID result = patch_VirtualAllocEx()(process, address, size, type,
protect);
MEMORY_BASIC_INFORMATION info;
CHECK(VirtualQuery(result, &info, sizeof(info)));
size = info.RegionSize;
if (committing)
MemoryHook::hook()->OnTrack(0, reinterpret_cast<int32>(result), size);
return result;
}
static BOOL WINAPI Perftools_VirtualFreeEx(HANDLE process, LPVOID address,
SIZE_T size, DWORD type) {
int chunk_size = size;
MEMORY_BASIC_INFORMATION info;
CHECK(VirtualQuery(address, &info, sizeof(info)));
if (chunk_size == 0)
chunk_size = info.RegionSize;
bool decommit = (info.State & MEM_COMMIT);
if (decommit)
MemoryHook::hook()->OnUntrack(0, reinterpret_cast<int32>(address),
chunk_size);
return patch_VirtualFreeEx()(process, address, size, type);
}
static base::Lock known_maps_lock;
static std::map<void*, int> known_maps;
static LPVOID WINAPI Perftools_MapViewOfFileEx(HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap,
LPVOID lpBaseAddress) {
// For this function pair, you always deallocate the full block of
// data that you allocate, so NewHook/DeleteHook is the right API.
LPVOID result = patch_MapViewOfFileEx()(hFileMappingObject, dwDesiredAccess,
dwFileOffsetHigh, dwFileOffsetLow,
dwNumberOfBytesToMap, lpBaseAddress);
{
base::AutoLock lock(known_maps_lock);
MEMORY_BASIC_INFORMATION info;
if (known_maps.find(result) == known_maps.end()) {
CHECK(VirtualQuery(result, &info, sizeof(info)));
// TODO(mbelshe): THIS map uses the standard heap!!!!
known_maps[result] = 1;
MemoryHook::hook()->OnTrack(0, reinterpret_cast<int32>(result),
info.RegionSize);
} else {
known_maps[result] = known_maps[result] + 1;
}
}
return result;
}
static LPVOID WINAPI Perftools_MapViewOfFile(HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap) {
return Perftools_MapViewOfFileEx(hFileMappingObject, dwDesiredAccess,
dwFileOffsetHigh, dwFileOffsetLow,
dwNumberOfBytesToMap, 0);
}
static BOOL WINAPI Perftools_UnmapViewOfFile(LPVOID lpBaseAddress) {
// This will call into NtUnmapViewOfSection().
return patch_UnmapViewOfFile()(lpBaseAddress);
}
static DWORD WINAPI Perftools_NtUnmapViewOfSection(HANDLE process,
LPVOID lpBaseAddress) {
// Some windows APIs call directly into this routine rather
// than calling UnmapViewOfFile. If we didn't trap this function,
// then we appear to have bogus leaks.
{
base::AutoLock lock(known_maps_lock);
MEMORY_BASIC_INFORMATION info;
CHECK(VirtualQuery(lpBaseAddress, &info, sizeof(info)));
if (known_maps.find(lpBaseAddress) != known_maps.end()) {
if (known_maps[lpBaseAddress] == 1) {
MemoryHook::hook()->OnUntrack(0, reinterpret_cast<int32>(lpBaseAddress),
info.RegionSize);
known_maps.erase(lpBaseAddress);
} else {
known_maps[lpBaseAddress] = known_maps[lpBaseAddress] - 1;
}
}
}
return patch_NtUnmapViewOfSection()(process, lpBaseAddress);
}
static HGLOBAL WINAPI Perftools_GlobalAlloc(UINT uFlags, SIZE_T dwBytes) {
// GlobalAlloc is built atop HeapAlloc anyway. So we don't track these.
// GlobalAlloc will internally call into HeapAlloc and we track there.
// Force all memory to be fixed.
uFlags &= ~GMEM_MOVEABLE;
HGLOBAL rv = patch_GlobalAlloc()(uFlags, dwBytes);
return rv;
}
static HGLOBAL WINAPI Perftools_GlobalFree(HGLOBAL hMem) {
return patch_GlobalFree()(hMem);
}
static HGLOBAL WINAPI Perftools_GlobalReAlloc(HGLOBAL hMem, SIZE_T dwBytes,
UINT uFlags) {
// TODO(jar): [The following looks like a copy/paste typo from LocalRealloc.]
// GlobalDiscard is a macro which calls LocalReAlloc with size 0.
if (dwBytes == 0) {
return patch_GlobalReAlloc()(hMem, dwBytes, uFlags);
}
HGLOBAL rv = Perftools_GlobalAlloc(uFlags, dwBytes);
if (hMem != 0) {
size_t size = GlobalSize(hMem);
if (size > dwBytes)
size = dwBytes;
// Note: size could be 0; HeapAlloc does allocate 0 length buffers.
memcpy(rv, hMem, size);
Perftools_GlobalFree(hMem);
}
return rv;
}
static HLOCAL WINAPI Perftools_LocalAlloc(UINT uFlags, SIZE_T dwBytes) {
// LocalAlloc is built atop HeapAlloc anyway. So we don't track these.
// LocalAlloc will internally call into HeapAlloc and we track there.
// Force all memory to be fixed.
uFlags &= ~LMEM_MOVEABLE;
HLOCAL rv = patch_LocalAlloc()(uFlags, dwBytes);
return rv;
}
static HLOCAL WINAPI Perftools_LocalFree(HLOCAL hMem) {
return patch_LocalFree()(hMem);
}
static HLOCAL WINAPI Perftools_LocalReAlloc(HLOCAL hMem, SIZE_T dwBytes,
UINT uFlags) {
// LocalDiscard is a macro which calls LocalReAlloc with size 0.
if (dwBytes == 0) {
return patch_LocalReAlloc()(hMem, dwBytes, uFlags);
}
HGLOBAL rv = Perftools_LocalAlloc(uFlags, dwBytes);
if (hMem != 0) {
size_t size = LocalSize(hMem);
if (size > dwBytes)
size = dwBytes;
// Note: size could be 0; HeapAlloc does allocate 0 length buffers.
memcpy(rv, hMem, size);
Perftools_LocalFree(hMem);
}
return rv;
}
bool MemoryHook::hooked_ = false;
MemoryHook* MemoryHook::global_hook_ = NULL;
MemoryHook::MemoryHook()
: watcher_(NULL),
heap_(NULL) {
CreateHeap();
}
MemoryHook::~MemoryHook() {
// It's a bit dangerous to ever close this heap; MemoryWatchers may have
// used this heap for their tracking data. Closing the heap while any
// MemoryWatchers still exist is pretty dangerous.
CloseHeap();
}
bool MemoryHook::Initialize() {
if (global_hook_ == NULL)
global_hook_ = new MemoryHook();
return true;
}
bool MemoryHook::Hook() {
DCHECK(!hooked_);
if (!hooked_) {
DCHECK(global_hook_);
// Luckily, Patch() doesn't call malloc or windows alloc routines
// itself -- though it does call new (we can use PatchWithStub to
// get around that, and will need to if we need to patch new).
HMODULE hkernel32 = ::GetModuleHandle(L"kernel32");
CHECK(hkernel32 != NULL);
HMODULE hntdll = ::GetModuleHandle(L"ntdll");
CHECK(hntdll != NULL);
// Now that we've found all the functions, patch them
INSTALL_PATCH(HeapCreate);
INSTALL_PATCH(HeapDestroy);
INSTALL_PATCH(HeapAlloc);
INSTALL_PATCH(HeapReAlloc);
INSTALL_PATCH(HeapFree);
INSTALL_PATCH(VirtualAllocEx);
INSTALL_PATCH(VirtualFreeEx);
INSTALL_PATCH(MapViewOfFileEx);
INSTALL_PATCH(MapViewOfFile);
INSTALL_PATCH(UnmapViewOfFile);
INSTALL_NTDLLPATCH(NtUnmapViewOfSection);
INSTALL_PATCH(GlobalAlloc);
INSTALL_PATCH(GlobalReAlloc);
INSTALL_PATCH(GlobalFree);
INSTALL_PATCH(LocalAlloc);
INSTALL_PATCH(LocalReAlloc);
INSTALL_PATCH(LocalFree);
// We are finally completely hooked.
hooked_ = true;
}
return true;
}
bool MemoryHook::Unhook() {
if (hooked_) {
// We need to go back to the system malloc/etc at global destruct time,
// so objects that were constructed before tcmalloc, using the system
// malloc, can destroy themselves using the system free. This depends
// on DLLs unloading in the reverse order in which they load!
//
// We also go back to the default HeapAlloc/etc, just for consistency.
// Who knows, it may help avoid weird bugs in some situations.
UNINSTALL_PATCH(HeapCreate);
UNINSTALL_PATCH(HeapDestroy);
UNINSTALL_PATCH(HeapAlloc);
UNINSTALL_PATCH(HeapReAlloc);
UNINSTALL_PATCH(HeapFree);
UNINSTALL_PATCH(VirtualAllocEx);
UNINSTALL_PATCH(VirtualFreeEx);
UNINSTALL_PATCH(MapViewOfFile);
UNINSTALL_PATCH(MapViewOfFileEx);
UNINSTALL_PATCH(UnmapViewOfFile);
UNINSTALL_PATCH(NtUnmapViewOfSection);
UNINSTALL_PATCH(GlobalAlloc);
UNINSTALL_PATCH(GlobalReAlloc);
UNINSTALL_PATCH(GlobalFree);
UNINSTALL_PATCH(LocalAlloc);
UNINSTALL_PATCH(LocalReAlloc);
UNINSTALL_PATCH(LocalFree);
hooked_ = false;
}
return true;
}
bool MemoryHook::RegisterWatcher(MemoryObserver* watcher) {
DCHECK(global_hook_->watcher_ == NULL);
if (!hooked_)
Hook();
DCHECK(global_hook_);
global_hook_->watcher_ = watcher;
return true;
}
bool MemoryHook::UnregisterWatcher(MemoryObserver* watcher) {
DCHECK(hooked_);
DCHECK(global_hook_->watcher_ == watcher);
// TODO(jar): changing watcher_ here is very racy. Other threads may (without
// a lock) testing, and then calling through this value. We probably can't
// remove this until we are single threaded.
global_hook_->watcher_ = NULL;
// For now, since there are no more watchers, unhook memory.
return Unhook();
}
bool MemoryHook::CreateHeap() {
// Create a heap for our own memory.
DCHECK(heap_ == NULL);
heap_ = HeapCreate(0, 0, 0);
DCHECK(heap_ != NULL);
return heap_ != NULL;
}
bool MemoryHook::CloseHeap() {
DCHECK(heap_ != NULL);
HeapDestroy(heap_);
heap_ = NULL;
return true;
}
void MemoryHook::OnTrack(HANDLE heap, int32 id, int32 size) {
// Don't notify about allocations to our internal heap.
if (heap == heap_)
return;
if (watcher_)
watcher_->OnTrack(heap, id, size);
}
void MemoryHook::OnUntrack(HANDLE heap, int32 id, int32 size) {
// Don't notify about allocations to our internal heap.
if (heap == heap_)
return;
if (watcher_)
watcher_->OnUntrack(heap, id, size);
}