FFmpeg4/libavcodec/4xm.c

1038 lines
34 KiB
C
Raw Permalink Normal View History

2023-07-02 12:20:28 +00:00
/*
* 4XM codec
* Copyright (c) 2003 Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 4XM codec.
*/
#include <inttypes.h>
#include "libavutil/avassert.h"
#include "libavutil/frame.h"
#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "blockdsp.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#define BLOCK_TYPE_VLC_BITS 5
#define ACDC_VLC_BITS 9
#define CFRAME_BUFFER_COUNT 100
static const uint8_t block_type_tab[2][4][8][2] = {
{
{ // { 8, 4, 2 } x { 8, 4, 2}
{ 0, 1 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 30, 5 }, { 31, 5 }, { 0, 0 }
}, { // { 8, 4 } x 1
{ 0, 1 }, { 0, 0 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 15, 4 }, { 0, 0 }
}, { // 1 x { 8, 4 }
{ 0, 1 }, { 2, 2 }, { 0, 0 }, { 6, 3 }, { 14, 4 }, { 15, 4 }, { 0, 0 }
}, { // 1 x 2, 2 x 1
{ 0, 1 }, { 0, 0 }, { 0, 0 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 15, 4 }
}
}, {
{ // { 8, 4, 2 } x { 8, 4, 2}
{ 1, 2 }, { 4, 3 }, { 5, 3 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 }
}, {// { 8, 4 } x 1
{ 1, 2 }, { 0, 0 }, { 2, 2 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 }
}, {// 1 x { 8, 4 }
{ 1, 2 }, { 2, 2 }, { 0, 0 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 }
}, {// 1 x 2, 2 x 1
{ 1, 2 }, { 0, 0 }, { 0, 0 }, { 0, 2 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
}
}
};
static const uint8_t size2index[4][4] = {
{ -1, 3, 1, 1 },
{ 3, 0, 0, 0 },
{ 2, 0, 0, 0 },
{ 2, 0, 0, 0 },
};
static const int8_t mv[256][2] = {
{ 0, 0 }, { 0, -1 }, { -1, 0 }, { 1, 0 }, { 0, 1 }, { -1, -1 }, { 1, -1 }, { -1, 1 },
{ 1, 1 }, { 0, -2 }, { -2, 0 }, { 2, 0 }, { 0, 2 }, { -1, -2 }, { 1, -2 }, { -2, -1 },
{ 2, -1 }, { -2, 1 }, { 2, 1 }, { -1, 2 }, { 1, 2 }, { -2, -2 }, { 2, -2 }, { -2, 2 },
{ 2, 2 }, { 0, -3 }, { -3, 0 }, { 3, 0 }, { 0, 3 }, { -1, -3 }, { 1, -3 }, { -3, -1 },
{ 3, -1 }, { -3, 1 }, { 3, 1 }, { -1, 3 }, { 1, 3 }, { -2, -3 }, { 2, -3 }, { -3, -2 },
{ 3, -2 }, { -3, 2 }, { 3, 2 }, { -2, 3 }, { 2, 3 }, { 0, -4 }, { -4, 0 }, { 4, 0 },
{ 0, 4 }, { -1, -4 }, { 1, -4 }, { -4, -1 }, { 4, -1 }, { 4, 1 }, { -1, 4 }, { 1, 4 },
{ -3, -3 }, { -3, 3 }, { 3, 3 }, { -2, -4 }, { -4, -2 }, { 4, -2 }, { -4, 2 }, { -2, 4 },
{ 2, 4 }, { -3, -4 }, { 3, -4 }, { 4, -3 }, { -5, 0 }, { -4, 3 }, { -3, 4 }, { 3, 4 },
{ -1, -5 }, { -5, -1 }, { -5, 1 }, { -1, 5 }, { -2, -5 }, { 2, -5 }, { 5, -2 }, { 5, 2 },
{ -4, -4 }, { -4, 4 }, { -3, -5 }, { -5, -3 }, { -5, 3 }, { 3, 5 }, { -6, 0 }, { 0, 6 },
{ -6, -1 }, { -6, 1 }, { 1, 6 }, { 2, -6 }, { -6, 2 }, { 2, 6 }, { -5, -4 }, { 5, 4 },
{ 4, 5 }, { -6, -3 }, { 6, 3 }, { -7, 0 }, { -1, -7 }, { 5, -5 }, { -7, 1 }, { -1, 7 },
{ 4, -6 }, { 6, 4 }, { -2, -7 }, { -7, 2 }, { -3, -7 }, { 7, -3 }, { 3, 7 }, { 6, -5 },
{ 0, -8 }, { -1, -8 }, { -7, -4 }, { -8, 1 }, { 4, 7 }, { 2, -8 }, { -2, 8 }, { 6, 6 },
{ -8, 3 }, { 5, -7 }, { -5, 7 }, { 8, -4 }, { 0, -9 }, { -9, -1 }, { 1, 9 }, { 7, -6 },
{ -7, 6 }, { -5, -8 }, { -5, 8 }, { -9, 3 }, { 9, -4 }, { 7, -7 }, { 8, -6 }, { 6, 8 },
{ 10, 1 }, { -10, 2 }, { 9, -5 }, { 10, -3 }, { -8, -7 }, { -10, -4 }, { 6, -9 }, { -11, 0 },
{ 11, 1 }, { -11, -2 }, { -2, 11 }, { 7, -9 }, { -7, 9 }, { 10, 6 }, { -4, 11 }, { 8, -9 },
{ 8, 9 }, { 5, 11 }, { 7, -10 }, { 12, -3 }, { 11, 6 }, { -9, -9 }, { 8, 10 }, { 5, 12 },
{ -11, 7 }, { 13, 2 }, { 6, -12 }, { 10, 9 }, { -11, 8 }, { -7, 12 }, { 0, 14 }, { 14, -2 },
{ -9, 11 }, { -6, 13 }, { -14, -4 }, { -5, -14 }, { 5, 14 }, { -15, -1 }, { -14, -6 }, { 3, -15 },
{ 11, -11 }, { -7, 14 }, { -5, 15 }, { 8, -14 }, { 15, 6 }, { 3, 16 }, { 7, -15 }, { -16, 5 },
{ 0, 17 }, { -16, -6 }, { -10, 14 }, { -16, 7 }, { 12, 13 }, { -16, 8 }, { -17, 6 }, { -18, 3 },
{ -7, 17 }, { 15, 11 }, { 16, 10 }, { 2, -19 }, { 3, -19 }, { -11, -16 }, { -18, 8 }, { -19, -6 },
{ 2, -20 }, { -17, -11 }, { -10, -18 }, { 8, 19 }, { -21, -1 }, { -20, 7 }, { -4, 21 }, { 21, 5 },
{ 15, 16 }, { 2, -22 }, { -10, -20 }, { -22, 5 }, { 20, -11 }, { -7, -22 }, { -12, 20 }, { 23, -5 },
{ 13, -20 }, { 24, -2 }, { -15, 19 }, { -11, 22 }, { 16, 19 }, { 23, -10 }, { -18, -18 }, { -9, -24 },
{ 24, -10 }, { -3, 26 }, { -23, 13 }, { -18, -20 }, { 17, 21 }, { -4, 27 }, { 27, 6 }, { 1, -28 },
{ -11, 26 }, { -17, -23 }, { 7, 28 }, { 11, -27 }, { 29, 5 }, { -23, -19 }, { -28, -11 }, { -21, 22 },
{ -30, 7 }, { -17, 26 }, { -27, 16 }, { 13, 29 }, { 19, -26 }, { 10, -31 }, { -14, -30 }, { 20, -27 },
{ -29, 18 }, { -16, -31 }, { -28, -22 }, { 21, -30 }, { -25, 28 }, { 26, -29 }, { 25, -32 }, { -32, -32 }
};
/* This is simply the scaled down elementwise product of the standard JPEG
* quantizer table and the AAN premul table. */
static const uint8_t dequant_table[64] = {
16, 15, 13, 19, 24, 31, 28, 17,
17, 23, 25, 31, 36, 63, 45, 21,
18, 24, 27, 37, 52, 59, 49, 20,
16, 28, 34, 40, 60, 80, 51, 20,
18, 31, 48, 66, 68, 86, 56, 21,
19, 38, 56, 59, 64, 64, 48, 20,
27, 48, 55, 55, 56, 51, 35, 15,
20, 35, 34, 32, 31, 22, 15, 8,
};
static VLC block_type_vlc[2][4];
typedef struct CFrameBuffer {
unsigned int allocated_size;
unsigned int size;
int id;
uint8_t *data;
} CFrameBuffer;
typedef struct FourXContext {
AVCodecContext *avctx;
BlockDSPContext bdsp;
BswapDSPContext bbdsp;
uint16_t *frame_buffer;
uint16_t *last_frame_buffer;
GetBitContext pre_gb; ///< ac/dc prefix
GetBitContext gb;
GetByteContext g;
GetByteContext g2;
int mv[256];
VLC pre_vlc;
int last_dc;
DECLARE_ALIGNED(32, int16_t, block)[6][64];
void *bitstream_buffer;
unsigned int bitstream_buffer_size;
int version;
CFrameBuffer cfrm[CFRAME_BUFFER_COUNT];
} FourXContext;
#define FIX_1_082392200 70936
#define FIX_1_414213562 92682
#define FIX_1_847759065 121095
#define FIX_2_613125930 171254
#define MULTIPLY(var, const) ((int)((var) * (unsigned)(const)) >> 16)
static void idct(int16_t block[64])
{
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
int tmp10, tmp11, tmp12, tmp13;
int z5, z10, z11, z12, z13;
int i;
int temp[64];
for (i = 0; i < 8; i++) {
tmp10 = block[8 * 0 + i] + block[8 * 4 + i];
tmp11 = block[8 * 0 + i] - block[8 * 4 + i];
tmp13 = block[8 * 2 + i] + block[8 * 6 + i];
tmp12 = MULTIPLY(block[8 * 2 + i] - block[8 * 6 + i], FIX_1_414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
z13 = block[8 * 5 + i] + block[8 * 3 + i];
z10 = block[8 * 5 + i] - block[8 * 3 + i];
z11 = block[8 * 1 + i] + block[8 * 7 + i];
z12 = block[8 * 1 + i] - block[8 * 7 + i];
tmp7 = z11 + z13;
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5;
tmp6 = tmp12 - tmp7;
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
temp[8 * 0 + i] = tmp0 + tmp7;
temp[8 * 7 + i] = tmp0 - tmp7;
temp[8 * 1 + i] = tmp1 + tmp6;
temp[8 * 6 + i] = tmp1 - tmp6;
temp[8 * 2 + i] = tmp2 + tmp5;
temp[8 * 5 + i] = tmp2 - tmp5;
temp[8 * 4 + i] = tmp3 + tmp4;
temp[8 * 3 + i] = tmp3 - tmp4;
}
for (i = 0; i < 8 * 8; i += 8) {
tmp10 = temp[0 + i] + temp[4 + i];
tmp11 = temp[0 + i] - temp[4 + i];
tmp13 = temp[2 + i] + temp[6 + i];
tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
z13 = temp[5 + i] + temp[3 + i];
z10 = temp[5 + i] - temp[3 + i];
z11 = temp[1 + i] + temp[7 + i];
z12 = temp[1 + i] - temp[7 + i];
tmp7 = z11 + z13;
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5;
tmp6 = tmp12 - tmp7;
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
block[0 + i] = (tmp0 + tmp7) >> 6;
block[7 + i] = (tmp0 - tmp7) >> 6;
block[1 + i] = (tmp1 + tmp6) >> 6;
block[6 + i] = (tmp1 - tmp6) >> 6;
block[2 + i] = (tmp2 + tmp5) >> 6;
block[5 + i] = (tmp2 - tmp5) >> 6;
block[4 + i] = (tmp3 + tmp4) >> 6;
block[3 + i] = (tmp3 - tmp4) >> 6;
}
}
static av_cold void init_vlcs(FourXContext *f)
{
static VLC_TYPE table[2][4][32][2];
int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 4; j++) {
block_type_vlc[i][j].table = table[i][j];
block_type_vlc[i][j].table_allocated = 32;
init_vlc(&block_type_vlc[i][j], BLOCK_TYPE_VLC_BITS, 7,
&block_type_tab[i][j][0][1], 2, 1,
&block_type_tab[i][j][0][0], 2, 1,
INIT_VLC_USE_NEW_STATIC);
}
}
}
static void init_mv(FourXContext *f, int linesize)
{
int i;
for (i = 0; i < 256; i++) {
if (f->version > 1)
f->mv[i] = mv[i][0] + mv[i][1] * linesize / 2;
else
f->mv[i] = (i & 15) - 8 + ((i >> 4) - 8) * linesize / 2;
}
}
#if HAVE_BIGENDIAN
#define LE_CENTRIC_MUL(dst, src, scale, dc) \
{ \
unsigned tmpval = AV_RN32(src); \
tmpval = (tmpval << 16) | (tmpval >> 16); \
tmpval = tmpval * (scale) + (dc); \
tmpval = (tmpval << 16) | (tmpval >> 16); \
AV_WN32A(dst, tmpval); \
}
#else
#define LE_CENTRIC_MUL(dst, src, scale, dc) \
{ \
unsigned tmpval = AV_RN32(src) * (scale) + (dc); \
AV_WN32A(dst, tmpval); \
}
#endif
static inline void mcdc(uint16_t *dst, const uint16_t *src, int log2w,
int h, int stride, int scale, unsigned dc)
{
int i;
dc *= 0x10001;
switch (log2w) {
case 0:
for (i = 0; i < h; i++) {
dst[0] = scale * src[0] + dc;
if (scale)
src += stride;
dst += stride;
}
break;
case 1:
for (i = 0; i < h; i++) {
LE_CENTRIC_MUL(dst, src, scale, dc);
if (scale)
src += stride;
dst += stride;
}
break;
case 2:
for (i = 0; i < h; i++) {
LE_CENTRIC_MUL(dst, src, scale, dc);
LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
if (scale)
src += stride;
dst += stride;
}
break;
case 3:
for (i = 0; i < h; i++) {
LE_CENTRIC_MUL(dst, src, scale, dc);
LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
LE_CENTRIC_MUL(dst + 4, src + 4, scale, dc);
LE_CENTRIC_MUL(dst + 6, src + 6, scale, dc);
if (scale)
src += stride;
dst += stride;
}
break;
default:
av_assert0(0);
}
}
static int decode_p_block(FourXContext *f, uint16_t *dst, const uint16_t *src,
int log2w, int log2h, int stride)
{
int index, h, code, ret, scale = 1;
uint16_t *start, *end;
unsigned dc = 0;
av_assert0(log2w >= 0 && log2h >= 0);
index = size2index[log2h][log2w];
av_assert0(index >= 0);
if (get_bits_left(&f->gb) < 1)
return AVERROR_INVALIDDATA;
h = 1 << log2h;
code = get_vlc2(&f->gb, block_type_vlc[1 - (f->version > 1)][index].table,
BLOCK_TYPE_VLC_BITS, 1);
av_assert0(code >= 0 && code <= 6);
start = f->last_frame_buffer;
end = start + stride * (f->avctx->height - h + 1) - (1 << log2w);
if (code == 1) {
log2h--;
if ((ret = decode_p_block(f, dst, src, log2w, log2h, stride)) < 0)
return ret;
return decode_p_block(f, dst + (stride << log2h),
src + (stride << log2h),
log2w, log2h, stride);
} else if (code == 2) {
log2w--;
if ((ret = decode_p_block(f, dst , src, log2w, log2h, stride)) < 0)
return ret;
return decode_p_block(f, dst + (1 << log2w),
src + (1 << log2w),
log2w, log2h, stride);
} else if (code == 6) {
if (bytestream2_get_bytes_left(&f->g2) < 4) {
av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
return AVERROR_INVALIDDATA;
}
if (log2w) {
dst[0] = bytestream2_get_le16u(&f->g2);
dst[1] = bytestream2_get_le16u(&f->g2);
} else {
dst[0] = bytestream2_get_le16u(&f->g2);
dst[stride] = bytestream2_get_le16u(&f->g2);
}
return 0;
}
if ((code&3)==0 && bytestream2_get_bytes_left(&f->g) < 1) {
av_log(f->avctx, AV_LOG_ERROR, "bytestream overread\n");
return AVERROR_INVALIDDATA;
}
if (code == 0) {
src += f->mv[bytestream2_get_byte(&f->g)];
} else if (code == 3 && f->version >= 2) {
return 0;
} else if (code == 4) {
src += f->mv[bytestream2_get_byte(&f->g)];
if (bytestream2_get_bytes_left(&f->g2) < 2){
av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
return AVERROR_INVALIDDATA;
}
dc = bytestream2_get_le16(&f->g2);
} else if (code == 5) {
if (bytestream2_get_bytes_left(&f->g2) < 2){
av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
return AVERROR_INVALIDDATA;
}
av_assert0(start <= src && src <= end);
scale = 0;
dc = bytestream2_get_le16(&f->g2);
}
if (start > src || src > end) {
av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n");
return AVERROR_INVALIDDATA;
}
mcdc(dst, src, log2w, h, stride, scale, dc);
return 0;
}
static int decode_p_frame(FourXContext *f, const uint8_t *buf, int length)
{
int x, y;
const int width = f->avctx->width;
const int height = f->avctx->height;
uint16_t *dst = f->frame_buffer;
uint16_t *src;
unsigned int bitstream_size, bytestream_size, wordstream_size, extra,
bytestream_offset, wordstream_offset;
int ret;
src = f->last_frame_buffer;
if (f->version > 1) {
extra = 20;
if (length < extra)
return AVERROR_INVALIDDATA;
bitstream_size = AV_RL32(buf + 8);
wordstream_size = AV_RL32(buf + 12);
bytestream_size = AV_RL32(buf + 16);
} else {
extra = 0;
bitstream_size = AV_RL16(buf - 4);
wordstream_size = AV_RL16(buf - 2);
bytestream_size = FFMAX(length - bitstream_size - wordstream_size, 0);
}
if (bitstream_size > length || bitstream_size >= INT_MAX/8 ||
bytestream_size > length - bitstream_size ||
wordstream_size > length - bytestream_size - bitstream_size ||
extra > length - bytestream_size - bitstream_size - wordstream_size) {
av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size,
bitstream_size+ bytestream_size+ wordstream_size - length);
return AVERROR_INVALIDDATA;
}
av_fast_padded_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size,
bitstream_size);
if (!f->bitstream_buffer)
return AVERROR(ENOMEM);
f->bbdsp.bswap_buf(f->bitstream_buffer, (const uint32_t *) (buf + extra),
bitstream_size / 4);
init_get_bits(&f->gb, f->bitstream_buffer, 8 * bitstream_size);
wordstream_offset = extra + bitstream_size;
bytestream_offset = extra + bitstream_size + wordstream_size;
bytestream2_init(&f->g2, buf + wordstream_offset,
length - wordstream_offset);
bytestream2_init(&f->g, buf + bytestream_offset,
length - bytestream_offset);
init_mv(f, width * 2);
for (y = 0; y < height; y += 8) {
for (x = 0; x < width; x += 8)
if ((ret = decode_p_block(f, dst + x, src + x, 3, 3, width)) < 0)
return ret;
src += 8 * width;
dst += 8 * width;
}
return 0;
}
/**
* decode block and dequantize.
* Note this is almost identical to MJPEG.
*/
static int decode_i_block(FourXContext *f, int16_t *block)
{
int code, i, j, level, val;
if (get_bits_left(&f->pre_gb) < 2) {
av_log(f->avctx, AV_LOG_ERROR, "%d bits left before decode_i_block()\n", get_bits_left(&f->pre_gb));
return AVERROR_INVALIDDATA;
}
/* DC coef */
val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
if (val >> 4) {
av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n");
return AVERROR_INVALIDDATA;
}
if (val)
val = get_xbits(&f->gb, val);
val = val * dequant_table[0] + f->last_dc;
f->last_dc = block[0] = val;
/* AC coefs */
i = 1;
for (;;) {
code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
/* EOB */
if (code == 0)
break;
if (code == 0xf0) {
i += 16;
if (i >= 64) {
av_log(f->avctx, AV_LOG_ERROR, "run %d overflow\n", i);
return 0;
}
} else {
if (code & 0xf) {
level = get_xbits(&f->gb, code & 0xf);
} else {
av_log(f->avctx, AV_LOG_ERROR, "0 coeff\n");
return AVERROR_INVALIDDATA;
}
i += code >> 4;
if (i >= 64) {
av_log(f->avctx, AV_LOG_ERROR, "run %d overflow\n", i);
return 0;
}
j = ff_zigzag_direct[i];
block[j] = level * dequant_table[j];
i++;
if (i >= 64)
break;
}
}
return 0;
}
static inline void idct_put(FourXContext *f, int x, int y)
{
int16_t (*block)[64] = f->block;
int stride = f->avctx->width;
int i;
uint16_t *dst = f->frame_buffer + y * stride + x;
for (i = 0; i < 4; i++) {
block[i][0] += 0x80 * 8 * 8;
idct(block[i]);
}
if (!(f->avctx->flags & AV_CODEC_FLAG_GRAY)) {
for (i = 4; i < 6; i++)
idct(block[i]);
}
/* Note transform is:
* y = ( 1b + 4g + 2r) / 14
* cb = ( 3b - 2g - 1r) / 14
* cr = (-1b - 4g + 5r) / 14 */
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++) {
int16_t *temp = block[(x >> 2) + 2 * (y >> 2)] +
2 * (x & 3) + 2 * 8 * (y & 3); // FIXME optimize
int cb = block[4][x + 8 * y];
int cr = block[5][x + 8 * y];
int cg = (cb + cr) >> 1;
int y;
cb += cb;
y = temp[0];
dst[0] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8);
y = temp[1];
dst[1] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8);
y = temp[8];
dst[stride] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8);
y = temp[9];
dst[1 + stride] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8);
dst += 2;
}
dst += 2 * stride - 2 * 8;
}
}
static int decode_i_mb(FourXContext *f)
{
int ret;
int i;
f->bdsp.clear_blocks(f->block[0]);
for (i = 0; i < 6; i++)
if ((ret = decode_i_block(f, f->block[i])) < 0)
return ret;
return 0;
}
static const uint8_t *read_huffman_tables(FourXContext *f,
const uint8_t * const buf,
int buf_size)
{
int frequency[512] = { 0 };
uint8_t flag[512];
int up[512];
uint8_t len_tab[257];
int bits_tab[257];
int start, end;
const uint8_t *ptr = buf;
const uint8_t *ptr_end = buf + buf_size;
int j;
memset(up, -1, sizeof(up));
start = *ptr++;
end = *ptr++;
for (;;) {
int i;
if (ptr_end - ptr < FFMAX(end - start + 1, 0) + 1) {
av_log(f->avctx, AV_LOG_ERROR, "invalid data in read_huffman_tables\n");
return NULL;
}
for (i = start; i <= end; i++)
frequency[i] = *ptr++;
start = *ptr++;
if (start == 0)
break;
end = *ptr++;
}
frequency[256] = 1;
while ((ptr - buf) & 3)
ptr++; // 4byte align
if (ptr > ptr_end) {
av_log(f->avctx, AV_LOG_ERROR, "ptr overflow in read_huffman_tables\n");
return NULL;
}
for (j = 257; j < 512; j++) {
int min_freq[2] = { 256 * 256, 256 * 256 };
int smallest[2] = { 0, 0 };
int i;
for (i = 0; i < j; i++) {
if (frequency[i] == 0)
continue;
if (frequency[i] < min_freq[1]) {
if (frequency[i] < min_freq[0]) {
min_freq[1] = min_freq[0];
smallest[1] = smallest[0];
min_freq[0] = frequency[i];
smallest[0] = i;
} else {
min_freq[1] = frequency[i];
smallest[1] = i;
}
}
}
if (min_freq[1] == 256 * 256)
break;
frequency[j] = min_freq[0] + min_freq[1];
flag[smallest[0]] = 0;
flag[smallest[1]] = 1;
up[smallest[0]] =
up[smallest[1]] = j;
frequency[smallest[0]] = frequency[smallest[1]] = 0;
}
for (j = 0; j < 257; j++) {
int node, len = 0, bits = 0;
for (node = j; up[node] != -1; node = up[node]) {
bits += flag[node] << len;
len++;
if (len > 31)
// can this happen at all ?
av_log(f->avctx, AV_LOG_ERROR,
"vlc length overflow\n");
}
bits_tab[j] = bits;
len_tab[j] = len;
}
ff_free_vlc(&f->pre_vlc);
if (init_vlc(&f->pre_vlc, ACDC_VLC_BITS, 257, len_tab, 1, 1,
bits_tab, 4, 4, 0))
return NULL;
return ptr;
}
static int mix(int c0, int c1)
{
int blue = 2 * (c0 & 0x001F) + (c1 & 0x001F);
int green = (2 * (c0 & 0x03E0) + (c1 & 0x03E0)) >> 5;
int red = 2 * (c0 >> 10) + (c1 >> 10);
return red / 3 * 1024 + green / 3 * 32 + blue / 3;
}
static int decode_i2_frame(FourXContext *f, const uint8_t *buf, int length)
{
int x, y, x2, y2;
const int width = f->avctx->width;
const int height = f->avctx->height;
const int mbs = (FFALIGN(width, 16) >> 4) * (FFALIGN(height, 16) >> 4);
uint16_t *dst = f->frame_buffer;
const uint8_t *buf_end = buf + length;
GetByteContext g3;
if (length < mbs * 8) {
av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
return AVERROR_INVALIDDATA;
}
bytestream2_init(&g3, buf, length);
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
unsigned int color[4] = { 0 }, bits;
if (buf_end - buf < 8)
return AVERROR_INVALIDDATA;
// warning following is purely guessed ...
color[0] = bytestream2_get_le16u(&g3);
color[1] = bytestream2_get_le16u(&g3);
if (color[0] & 0x8000)
av_log(f->avctx, AV_LOG_ERROR, "unk bit 1\n");
if (color[1] & 0x8000)
av_log(f->avctx, AV_LOG_ERROR, "unk bit 2\n");
color[2] = mix(color[0], color[1]);
color[3] = mix(color[1], color[0]);
bits = bytestream2_get_le32u(&g3);
for (y2 = 0; y2 < 16; y2++) {
for (x2 = 0; x2 < 16; x2++) {
int index = 2 * (x2 >> 2) + 8 * (y2 >> 2);
dst[y2 * width + x2] = color[(bits >> index) & 3];
}
}
dst += 16;
}
dst += 16 * width - x;
}
return 0;
}
static int decode_i_frame(FourXContext *f, const uint8_t *buf, int length)
{
int x, y, ret;
const int width = f->avctx->width;
const int height = f->avctx->height;
const unsigned int bitstream_size = AV_RL32(buf);
unsigned int prestream_size;
const uint8_t *prestream;
if (bitstream_size > (1 << 26))
return AVERROR_INVALIDDATA;
if (length < bitstream_size + 12) {
av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
return AVERROR_INVALIDDATA;
}
prestream_size = 4 * AV_RL32(buf + bitstream_size + 4);
prestream = buf + bitstream_size + 12;
if (prestream_size + bitstream_size + 12 != length
|| prestream_size > (1 << 26)) {
av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n",
prestream_size, bitstream_size, length);
return AVERROR_INVALIDDATA;
}
prestream = read_huffman_tables(f, prestream, prestream_size);
if (!prestream) {
av_log(f->avctx, AV_LOG_ERROR, "Error reading Huffman tables.\n");
return AVERROR_INVALIDDATA;
}
av_assert0(prestream <= buf + length);
init_get_bits(&f->gb, buf + 4, 8 * bitstream_size);
prestream_size = length + buf - prestream;
av_fast_padded_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size,
prestream_size);
if (!f->bitstream_buffer)
return AVERROR(ENOMEM);
f->bbdsp.bswap_buf(f->bitstream_buffer, (const uint32_t *) prestream,
prestream_size / 4);
init_get_bits(&f->pre_gb, f->bitstream_buffer, 8 * prestream_size);
f->last_dc = 0 * 128 * 8 * 8;
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
if ((ret = decode_i_mb(f)) < 0)
return ret;
idct_put(f, x, y);
}
}
if (get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256)
av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n");
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
FourXContext *const f = avctx->priv_data;
AVFrame *picture = data;
int i, frame_4cc, frame_size, ret;
if (buf_size < 20)
return AVERROR_INVALIDDATA;
av_assert0(avctx->width % 16 == 0 && avctx->height % 16 == 0);
if (buf_size < AV_RL32(buf + 4) + 8) {
av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %"PRIu32"\n",
buf_size, AV_RL32(buf + 4));
return AVERROR_INVALIDDATA;
}
frame_4cc = AV_RL32(buf);
if (frame_4cc == AV_RL32("cfrm")) {
int free_index = -1;
int id, whole_size;
const int data_size = buf_size - 20;
CFrameBuffer *cfrm;
if (f->version <= 1) {
av_log(f->avctx, AV_LOG_ERROR, "cfrm in version %d\n", f->version);
return AVERROR_INVALIDDATA;
}
id = AV_RL32(buf + 12);
whole_size = AV_RL32(buf + 16);
if (data_size < 0 || whole_size < 0) {
av_log(f->avctx, AV_LOG_ERROR, "sizes invalid\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < CFRAME_BUFFER_COUNT; i++)
if (f->cfrm[i].id && f->cfrm[i].id < avctx->frame_number)
av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n",
f->cfrm[i].id);
for (i = 0; i < CFRAME_BUFFER_COUNT; i++) {
if (f->cfrm[i].id == id)
break;
if (f->cfrm[i].size == 0)
free_index = i;
}
if (i >= CFRAME_BUFFER_COUNT) {
i = free_index;
f->cfrm[i].id = id;
}
cfrm = &f->cfrm[i];
if (data_size > UINT_MAX - cfrm->size - AV_INPUT_BUFFER_PADDING_SIZE)
return AVERROR_INVALIDDATA;
cfrm->data = av_fast_realloc(cfrm->data, &cfrm->allocated_size,
cfrm->size + data_size + AV_INPUT_BUFFER_PADDING_SIZE);
// explicit check needed as memcpy below might not catch a NULL
if (!cfrm->data) {
av_log(f->avctx, AV_LOG_ERROR, "realloc failure\n");
return AVERROR(ENOMEM);
}
memcpy(cfrm->data + cfrm->size, buf + 20, data_size);
cfrm->size += data_size;
if (cfrm->size >= whole_size) {
buf = cfrm->data;
frame_size = cfrm->size;
if (id != avctx->frame_number)
av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %d\n",
id, avctx->frame_number);
if (f->version <= 1)
return AVERROR_INVALIDDATA;
cfrm->size = cfrm->id = 0;
frame_4cc = AV_RL32("pfrm");
} else
return buf_size;
} else {
buf = buf + 12;
frame_size = buf_size - 12;
}
if ((ret = ff_get_buffer(avctx, picture, 0)) < 0)
return ret;
if (frame_4cc == AV_RL32("ifr2")) {
picture->pict_type = AV_PICTURE_TYPE_I;
if ((ret = decode_i2_frame(f, buf - 4, frame_size + 4)) < 0) {
av_log(f->avctx, AV_LOG_ERROR, "decode i2 frame failed\n");
return ret;
}
} else if (frame_4cc == AV_RL32("ifrm")) {
picture->pict_type = AV_PICTURE_TYPE_I;
if ((ret = decode_i_frame(f, buf, frame_size)) < 0) {
av_log(f->avctx, AV_LOG_ERROR, "decode i frame failed\n");
return ret;
}
} else if (frame_4cc == AV_RL32("pfrm") || frame_4cc == AV_RL32("pfr2")) {
picture->pict_type = AV_PICTURE_TYPE_P;
if ((ret = decode_p_frame(f, buf, frame_size)) < 0) {
av_log(f->avctx, AV_LOG_ERROR, "decode p frame failed\n");
return ret;
}
} else if (frame_4cc == AV_RL32("snd_")) {
av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n",
buf_size);
} else {
av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n",
buf_size);
}
picture->key_frame = picture->pict_type == AV_PICTURE_TYPE_I;
av_image_copy_plane(picture->data[0], picture->linesize[0],
(const uint8_t*)f->frame_buffer, avctx->width * 2,
avctx->width * 2, avctx->height);
FFSWAP(uint16_t *, f->frame_buffer, f->last_frame_buffer);
*got_frame = 1;
emms_c();
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
FourXContext * const f = avctx->priv_data;
int i;
av_freep(&f->frame_buffer);
av_freep(&f->last_frame_buffer);
av_freep(&f->bitstream_buffer);
f->bitstream_buffer_size = 0;
for (i = 0; i < CFRAME_BUFFER_COUNT; i++) {
av_freep(&f->cfrm[i].data);
f->cfrm[i].allocated_size = 0;
}
ff_free_vlc(&f->pre_vlc);
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
FourXContext * const f = avctx->priv_data;
int ret;
if (avctx->extradata_size != 4 || !avctx->extradata) {
av_log(avctx, AV_LOG_ERROR, "extradata wrong or missing\n");
return AVERROR_INVALIDDATA;
}
if((avctx->width % 16) || (avctx->height % 16)) {
av_log(avctx, AV_LOG_ERROR, "unsupported width/height\n");
return AVERROR_INVALIDDATA;
}
ret = av_image_check_size(avctx->width, avctx->height, 0, avctx);
if (ret < 0)
return ret;
f->frame_buffer = av_mallocz(avctx->width * avctx->height * 2);
f->last_frame_buffer = av_mallocz(avctx->width * avctx->height * 2);
if (!f->frame_buffer || !f->last_frame_buffer) {
decode_end(avctx);
return AVERROR(ENOMEM);
}
f->version = AV_RL32(avctx->extradata) >> 16;
ff_blockdsp_init(&f->bdsp, avctx);
ff_bswapdsp_init(&f->bbdsp);
f->avctx = avctx;
init_vlcs(f);
if (f->version > 2)
avctx->pix_fmt = AV_PIX_FMT_RGB565;
else
avctx->pix_fmt = AV_PIX_FMT_BGR555;
return 0;
}
AVCodec ff_fourxm_decoder = {
.name = "4xm",
.long_name = NULL_IF_CONFIG_SMALL("4X Movie"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_4XM,
.priv_data_size = sizeof(FourXContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
};