FFmpeg4/libavcodec/huffyuvenc.c

1137 lines
38 KiB
C
Raw Permalink Normal View History

2023-07-02 12:20:28 +00:00
/*
* Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
*
* see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
* the algorithm used
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
*/
/**
* @file
* huffyuv encoder
*/
#include "avcodec.h"
#include "huffyuv.h"
#include "huffman.h"
#include "huffyuvencdsp.h"
#include "internal.h"
#include "lossless_videoencdsp.h"
#include "put_bits.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
const uint8_t *src0, const uint8_t *src1, int w)
{
if (s->bps <= 8) {
s->llvidencdsp.diff_bytes(dst, src0, src1, w);
} else {
s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
}
}
static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
const uint8_t *src, int w, int left)
{
int i;
int min_width = FFMIN(w, 32);
if (s->bps <= 8) {
for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
const int temp = src[i];
dst[i] = temp - left;
left = temp;
}
if (w < 32)
return left;
s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
return src[w-1];
} else {
const uint16_t *src16 = (const uint16_t *)src;
uint16_t *dst16 = ( uint16_t *)dst;
for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
const int temp = src16[i];
dst16[i] = temp - left;
left = temp;
}
if (w < 32)
return left;
s->hencdsp.diff_int16(dst16 + 32, src16 + 32, src16 + 31, s->n - 1, w - 32);
return src16[w-1];
}
}
static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
const uint8_t *src, int w,
int *red, int *green, int *blue,
int *alpha)
{
int i;
int r, g, b, a;
int min_width = FFMIN(w, 8);
r = *red;
g = *green;
b = *blue;
a = *alpha;
for (i = 0; i < min_width; i++) {
const int rt = src[i * 4 + R];
const int gt = src[i * 4 + G];
const int bt = src[i * 4 + B];
const int at = src[i * 4 + A];
dst[i * 4 + R] = rt - r;
dst[i * 4 + G] = gt - g;
dst[i * 4 + B] = bt - b;
dst[i * 4 + A] = at - a;
r = rt;
g = gt;
b = bt;
a = at;
}
s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 32 - 4, w * 4 - 32);
*red = src[(w - 1) * 4 + R];
*green = src[(w - 1) * 4 + G];
*blue = src[(w - 1) * 4 + B];
*alpha = src[(w - 1) * 4 + A];
}
static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
uint8_t *src, int w,
int *red, int *green, int *blue)
{
int i;
int r, g, b;
r = *red;
g = *green;
b = *blue;
for (i = 0; i < FFMIN(w, 16); i++) {
const int rt = src[i * 3 + 0];
const int gt = src[i * 3 + 1];
const int bt = src[i * 3 + 2];
dst[i * 3 + 0] = rt - r;
dst[i * 3 + 1] = gt - g;
dst[i * 3 + 2] = bt - b;
r = rt;
g = gt;
b = bt;
}
s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
*red = src[(w - 1) * 3 + 0];
*green = src[(w - 1) * 3 + 1];
*blue = src[(w - 1) * 3 + 2];
}
static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
{
if (s->bps <= 8) {
s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
} else {
s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
}
}
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
{
int i;
int index = 0;
int n = s->vlc_n;
for (i = 0; i < n;) {
int val = len[i];
int repeat = 0;
for (; i < n && len[i] == val && repeat < 255; i++)
repeat++;
av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
if (repeat > 7) {
buf[index++] = val;
buf[index++] = repeat;
} else {
buf[index++] = val | (repeat << 5);
}
}
return index;
}
static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
{
int i, ret;
int size = 0;
int count = 3;
if (s->version > 2)
count = 1 + s->alpha + 2*s->chroma;
for (i = 0; i < count; i++) {
if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
return ret;
if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
return -1;
}
size += store_table(s, s->len[i], buf + size);
}
return size;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i, j;
int ret;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
ff_huffyuv_common_init(avctx);
ff_huffyuvencdsp_init(&s->hencdsp, avctx);
ff_llvidencdsp_init(&s->llvidencdsp);
avctx->extradata = av_mallocz(3*MAX_N + 4);
if (s->flags&AV_CODEC_FLAG_PASS1) {
#define STATS_OUT_SIZE 21*MAX_N*3 + 4
avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
if (!avctx->stats_out)
return AVERROR(ENOMEM);
}
s->version = 2;
if (!avctx->extradata)
return AVERROR(ENOMEM);
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
avctx->coded_frame->key_frame = 1;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->context_model == 1)
s->context = avctx->context_model;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
s->bps = desc->comp[0].depth;
s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
s->chroma = desc->nb_components > 2;
s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
&s->chroma_h_shift,
&s->chroma_v_shift);
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
if (s->width & 1) {
av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
return AVERROR(EINVAL);
}
s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
break;
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV440P:
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_GBRP9:
case AV_PIX_FMT_GBRP10:
case AV_PIX_FMT_GBRP12:
case AV_PIX_FMT_GBRP14:
case AV_PIX_FMT_GBRP16:
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_GRAY16:
case AV_PIX_FMT_YUVA444P:
case AV_PIX_FMT_YUVA420P:
case AV_PIX_FMT_YUVA422P:
case AV_PIX_FMT_GBRAP:
case AV_PIX_FMT_YUV420P9:
case AV_PIX_FMT_YUV420P10:
case AV_PIX_FMT_YUV420P12:
case AV_PIX_FMT_YUV420P14:
case AV_PIX_FMT_YUV420P16:
case AV_PIX_FMT_YUV422P9:
case AV_PIX_FMT_YUV422P10:
case AV_PIX_FMT_YUV422P12:
case AV_PIX_FMT_YUV422P14:
case AV_PIX_FMT_YUV422P16:
case AV_PIX_FMT_YUV444P9:
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV444P12:
case AV_PIX_FMT_YUV444P14:
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_YUVA420P9:
case AV_PIX_FMT_YUVA420P10:
case AV_PIX_FMT_YUVA420P16:
case AV_PIX_FMT_YUVA422P9:
case AV_PIX_FMT_YUVA422P10:
case AV_PIX_FMT_YUVA422P16:
case AV_PIX_FMT_YUVA444P9:
case AV_PIX_FMT_YUVA444P10:
case AV_PIX_FMT_YUVA444P16:
s->version = 3;
break;
case AV_PIX_FMT_RGB32:
s->bitstream_bpp = 32;
break;
case AV_PIX_FMT_RGB24:
s->bitstream_bpp = 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(EINVAL);
}
s->n = 1<<s->bps;
s->vlc_n = FFMIN(s->n, MAX_VLC_N);
avctx->bits_per_coded_sample = s->bitstream_bpp;
s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->prediction_method)
s->predictor = avctx->prediction_method;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
if (s->context) {
if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
av_log(avctx, AV_LOG_ERROR,
"context=1 is not compatible with "
"2 pass huffyuv encoding\n");
return AVERROR(EINVAL);
}
}
if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
av_log(avctx, AV_LOG_ERROR,
"Error: YV12 is not supported by huffyuv; use "
"vcodec=ffvhuff or format=422p\n");
return AVERROR(EINVAL);
}
#if FF_API_PRIVATE_OPT
if (s->context) {
av_log(avctx, AV_LOG_ERROR,
"Error: per-frame huffman tables are not supported "
"by huffyuv; use vcodec=ffvhuff\n");
return AVERROR(EINVAL);
}
if (s->version > 2) {
av_log(avctx, AV_LOG_ERROR,
"Error: ver>2 is not supported "
"by huffyuv; use vcodec=ffvhuff\n");
return AVERROR(EINVAL);
}
#endif
if (s->interlaced != ( s->height > 288 ))
av_log(avctx, AV_LOG_INFO,
"using huffyuv 2.2.0 or newer interlacing flag\n");
}
if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
"Use vstrict=-2 / -strict -2 to use it anyway.\n");
return AVERROR(EINVAL);
}
if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
av_log(avctx, AV_LOG_ERROR,
"Error: RGB is incompatible with median predictor\n");
return AVERROR(EINVAL);
}
((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
if (s->context)
((uint8_t*)avctx->extradata)[2] |= 0x40;
if (s->version < 3) {
((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
((uint8_t*)avctx->extradata)[3] = 0;
} else {
((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
if (s->chroma)
((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
if (s->alpha)
((uint8_t*)avctx->extradata)[2] |= 4;
((uint8_t*)avctx->extradata)[3] = 1;
}
s->avctx->extradata_size = 4;
if (avctx->stats_in) {
char *p = avctx->stats_in;
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j] = 1;
for (;;) {
for (i = 0; i < 4; i++) {
char *next;
for (j = 0; j < s->vlc_n; j++) {
s->stats[i][j] += strtol(p, &next, 0);
if (next == p) return -1;
p = next;
}
}
if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
}
} else {
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++) {
int d = FFMIN(j, s->vlc_n - j);
s->stats[i][j] = 100000000 / (d*d + 1);
}
}
ret = store_huffman_tables(s, s->avctx->extradata + s->avctx->extradata_size);
if (ret < 0)
return ret;
s->avctx->extradata_size += ret;
if (s->context) {
for (i = 0; i < 4; i++) {
int pels = s->width * s->height / (i ? 40 : 10);
for (j = 0; j < s->vlc_n; j++) {
int d = FFMIN(j, s->vlc_n - j);
s->stats[i][j] = pels/(d*d + 1);
}
}
} else {
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j]= 0;
}
if (ff_huffyuv_alloc_temp(s)) {
ff_huffyuv_common_end(s);
return AVERROR(ENOMEM);
}
s->picture_number=0;
return 0;
}
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
{
int i;
const uint8_t *y = s->temp[0] + offset;
const uint8_t *u = s->temp[1] + offset / 2;
const uint8_t *v = s->temp[2] + offset / 2;
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD4\
int y0 = y[2 * i];\
int y1 = y[2 * i + 1];\
int u0 = u[i];\
int v0 = v[i];
count /= 2;
if (s->flags & AV_CODEC_FLAG_PASS1) {
for(i = 0; i < count; i++) {
LOAD4;
s->stats[0][y0]++;
s->stats[1][u0]++;
s->stats[0][y1]++;
s->stats[2][v0]++;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD4;
s->stats[0][y0]++;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
s->stats[1][u0]++;
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
s->stats[0][y1]++;
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
s->stats[2][v0]++;
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
} else {
for(i = 0; i < count; i++) {
LOAD4;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
}
return 0;
}
static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
{
int i, count = width/2;
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOADEND\
int y0 = s->temp[0][width-1];
#define LOADEND_14\
int y0 = s->temp16[0][width-1] & mask;
#define LOADEND_16\
int y0 = s->temp16[0][width-1];
#define STATEND\
s->stats[plane][y0]++;
#define STATEND_16\
s->stats[plane][y0>>2]++;
#define WRITEEND\
put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
#define WRITEEND_16\
put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
put_bits(&s->pb, 2, y0&3);
#define LOAD2\
int y0 = s->temp[0][2 * i];\
int y1 = s->temp[0][2 * i + 1];
#define LOAD2_14\
int y0 = s->temp16[0][2 * i] & mask;\
int y1 = s->temp16[0][2 * i + 1] & mask;
#define LOAD2_16\
int y0 = s->temp16[0][2 * i];\
int y1 = s->temp16[0][2 * i + 1];
#define STAT2\
s->stats[plane][y0]++;\
s->stats[plane][y1]++;
#define STAT2_16\
s->stats[plane][y0>>2]++;\
s->stats[plane][y1>>2]++;
#define WRITE2\
put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
#define WRITE2_16\
put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
put_bits(&s->pb, 2, y0&3);\
put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
put_bits(&s->pb, 2, y1&3);
if (s->bps <= 8) {
if (s->flags & AV_CODEC_FLAG_PASS1) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
}
if (width&1) {
LOADEND;
STATEND;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
WRITE2;
}
if (width&1) {
LOADEND;
STATEND;
WRITEEND;
}
} else {
for (i = 0; i < count; i++) {
LOAD2;
WRITE2;
}
if (width&1) {
LOADEND;
WRITEEND;
}
}
} else if (s->bps <= 14) {
int mask = s->n - 1;
if (s->flags & AV_CODEC_FLAG_PASS1) {
for (i = 0; i < count; i++) {
LOAD2_14;
STAT2;
}
if (width&1) {
LOADEND_14;
STATEND;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD2_14;
STAT2;
WRITE2;
}
if (width&1) {
LOADEND_14;
STATEND;
WRITEEND;
}
} else {
for (i = 0; i < count; i++) {
LOAD2_14;
WRITE2;
}
if (width&1) {
LOADEND_14;
WRITEEND;
}
}
} else {
if (s->flags & AV_CODEC_FLAG_PASS1) {
for (i = 0; i < count; i++) {
LOAD2_16;
STAT2_16;
}
if (width&1) {
LOADEND_16;
STATEND_16;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD2_16;
STAT2_16;
WRITE2_16;
}
if (width&1) {
LOADEND_16;
STATEND_16;
WRITEEND_16;
}
} else {
for (i = 0; i < count; i++) {
LOAD2_16;
WRITE2_16;
}
if (width&1) {
LOADEND_16;
WRITEEND_16;
}
}
}
#undef LOAD2
#undef STAT2
#undef WRITE2
return 0;
}
static int encode_gray_bitstream(HYuvContext *s, int count)
{
int i;
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD2\
int y0 = s->temp[0][2 * i];\
int y1 = s->temp[0][2 * i + 1];
#define STAT2\
s->stats[0][y0]++;\
s->stats[0][y1]++;
#define WRITE2\
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
count /= 2;
if (s->flags & AV_CODEC_FLAG_PASS1) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
WRITE2;
}
} else {
for (i = 0; i < count; i++) {
LOAD2;
WRITE2;
}
}
return 0;
}
static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
{
int i;
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
4 * planes * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD_GBRA \
int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
int a = s->temp[0][planes * i + A];
#define STAT_BGRA \
s->stats[0][b]++; \
s->stats[1][g]++; \
s->stats[2][r]++; \
if (planes == 4) \
s->stats[2][a]++;
#define WRITE_GBRA \
put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
if (planes == 4) \
put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
if ((s->flags & AV_CODEC_FLAG_PASS1) &&
(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
for (i = 0; i < count; i++) {
LOAD_GBRA;
STAT_BGRA;
}
} else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
for (i = 0; i < count; i++) {
LOAD_GBRA;
STAT_BGRA;
WRITE_GBRA;
}
} else {
for (i = 0; i < count; i++) {
LOAD_GBRA;
WRITE_GBRA;
}
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
HYuvContext *s = avctx->priv_data;
const int width = s->width;
const int width2 = s->width>>1;
const int height = s->height;
const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
const AVFrame * const p = pict;
int i, j, size = 0, ret;
if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
return ret;
if (s->context) {
size = store_huffman_tables(s, pkt->data);
if (size < 0)
return size;
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j] >>= 1;
}
init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
int lefty, leftu, leftv, y, cy;
put_bits(&s->pb, 8, leftv = p->data[2][0]);
put_bits(&s->pb, 8, lefty = p->data[0][1]);
put_bits(&s->pb, 8, leftu = p->data[1][0]);
put_bits(&s->pb, 8, p->data[0][0]);
lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
encode_422_bitstream(s, 2, width-2);
if (s->predictor==MEDIAN) {
int lefttopy, lefttopu, lefttopv;
cy = y = 1;
if (s->interlaced) {
lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
encode_422_bitstream(s, 0, width);
y++; cy++;
}
lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
encode_422_bitstream(s, 0, 4);
lefttopy = p->data[0][3];
lefttopu = p->data[1][1];
lefttopv = p->data[2][1];
s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width - 4);
y++; cy++;
for (; y < height; y++,cy++) {
uint8_t *ydst, *udst, *vdst;
if (s->bitstream_bpp == 12) {
while (2 * cy > y) {
ydst = p->data[0] + p->linesize[0] * y;
s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
encode_gray_bitstream(s, width);
y++;
}
if (y >= height) break;
}
ydst = p->data[0] + p->linesize[0] * y;
udst = p->data[1] + p->linesize[1] * cy;
vdst = p->data[2] + p->linesize[2] * cy;
s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width);
}
} else {
for (cy = y = 1; y < height; y++, cy++) {
uint8_t *ydst, *udst, *vdst;
/* encode a luma only line & y++ */
if (s->bitstream_bpp == 12) {
ydst = p->data[0] + p->linesize[0] * y;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
} else {
lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
}
encode_gray_bitstream(s, width);
y++;
if (y >= height) break;
}
ydst = p->data[0] + p->linesize[0] * y;
udst = p->data[1] + p->linesize[1] * cy;
vdst = p->data[2] + p->linesize[2] * cy;
if (s->predictor == PLANE && s->interlaced < cy) {
s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
} else {
lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
}
encode_422_bitstream(s, 0, width);
}
}
} else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
const int stride = -p->linesize[0];
const int fake_stride = -fake_ystride;
int y;
int leftr, leftg, leftb, lefta;
put_bits(&s->pb, 8, lefta = data[A]);
put_bits(&s->pb, 8, leftr = data[R]);
put_bits(&s->pb, 8, leftg = data[G]);
put_bits(&s->pb, 8, leftb = data[B]);
sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
&leftr, &leftg, &leftb, &lefta);
encode_bgra_bitstream(s, width - 1, 4);
for (y = 1; y < s->height; y++) {
uint8_t *dst = data + y*stride;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
&leftr, &leftg, &leftb, &lefta);
} else {
sub_left_prediction_bgr32(s, s->temp[0], dst, width,
&leftr, &leftg, &leftb, &lefta);
}
encode_bgra_bitstream(s, width, 4);
}
} else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
const int stride = -p->linesize[0];
const int fake_stride = -fake_ystride;
int y;
int leftr, leftg, leftb;
put_bits(&s->pb, 8, leftr = data[0]);
put_bits(&s->pb, 8, leftg = data[1]);
put_bits(&s->pb, 8, leftb = data[2]);
put_bits(&s->pb, 8, 0);
sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
&leftr, &leftg, &leftb);
encode_bgra_bitstream(s, width-1, 3);
for (y = 1; y < s->height; y++) {
uint8_t *dst = data + y * stride;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
width * 3);
sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
&leftr, &leftg, &leftb);
} else {
sub_left_prediction_rgb24(s, s->temp[0], dst, width,
&leftr, &leftg, &leftb);
}
encode_bgra_bitstream(s, width, 3);
}
} else if (s->version > 2) {
int plane;
for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
int left, y;
int w = width;
int h = height;
int fake_stride = fake_ystride;
if (s->chroma && (plane == 1 || plane == 2)) {
w >>= s->chroma_h_shift;
h >>= s->chroma_v_shift;
fake_stride = plane == 1 ? fake_ustride : fake_vstride;
}
left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
encode_plane_bitstream(s, w, plane);
if (s->predictor==MEDIAN) {
int lefttop;
y = 1;
if (s->interlaced) {
left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
encode_plane_bitstream(s, w, plane);
y++;
}
lefttop = p->data[plane][0];
for (; y < h; y++) {
uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
encode_plane_bitstream(s, w, plane);
}
} else {
for (y = 1; y < h; y++) {
uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
if (s->predictor == PLANE && s->interlaced < y) {
diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
} else {
left = sub_left_prediction(s, s->temp[0], dst, w , left);
}
encode_plane_bitstream(s, w, plane);
}
}
}
} else {
av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
}
emms_c();
size += (put_bits_count(&s->pb) + 31) / 8;
put_bits(&s->pb, 16, 0);
put_bits(&s->pb, 15, 0);
size /= 4;
if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
int j;
char *p = avctx->stats_out;
char *end = p + STATS_OUT_SIZE;
for (i = 0; i < 4; i++) {
for (j = 0; j < s->vlc_n; j++) {
snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
p += strlen(p);
s->stats[i][j]= 0;
}
snprintf(p, end-p, "\n");
p++;
if (end <= p)
return AVERROR(ENOMEM);
}
} else if (avctx->stats_out)
avctx->stats_out[0] = '\0';
if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
flush_put_bits(&s->pb);
s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
}
s->picture_number++;
pkt->size = size * 4;
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
return 0;
}
static av_cold int encode_end(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
ff_huffyuv_common_end(s);
av_freep(&avctx->extradata);
av_freep(&avctx->stats_out);
return 0;
}
#define OFFSET(x) offsetof(HYuvContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
#define COMMON_OPTIONS \
{ "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
0, 1, VE }, \
{ "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, "pred" }, \
{ "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, "pred" }, \
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
static const AVOption normal_options[] = {
COMMON_OPTIONS
{ NULL },
};
static const AVOption ff_options[] = {
COMMON_OPTIONS
{ "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
{ NULL },
};
static const AVClass normal_class = {
.class_name = "huffyuv",
.item_name = av_default_item_name,
.option = normal_options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVClass ff_class = {
.class_name = "ffvhuff",
.item_name = av_default_item_name,
.option = ff_options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_huffyuv_encoder = {
.name = "huffyuv",
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_HUFFYUV,
.priv_data_size = sizeof(HYuvContext),
.init = encode_init,
.encode2 = encode_frame,
.close = encode_end,
.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.priv_class = &normal_class,
.pix_fmts = (const enum AVPixelFormat[]){
AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
},
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP,
};
#if CONFIG_FFVHUFF_ENCODER
AVCodec ff_ffvhuff_encoder = {
.name = "ffvhuff",
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFVHUFF,
.priv_data_size = sizeof(HYuvContext),
.init = encode_init,
.encode2 = encode_frame,
.close = encode_end,
.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.priv_class = &ff_class,
.pix_fmts = (const enum AVPixelFormat[]){
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_GBRP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GBRAP,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_RGB24,
AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
},
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP,
};
#endif