326 lines
9.5 KiB
C
326 lines
9.5 KiB
C
|
/*
|
||
|
* LPC utility code
|
||
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#include "libavutil/common.h"
|
||
|
#include "libavutil/lls.h"
|
||
|
|
||
|
#define LPC_USE_DOUBLE
|
||
|
#include "lpc.h"
|
||
|
#include "libavutil/avassert.h"
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Apply Welch window function to audio block
|
||
|
*/
|
||
|
static void lpc_apply_welch_window_c(const int32_t *data, int len,
|
||
|
double *w_data)
|
||
|
{
|
||
|
int i, n2;
|
||
|
double w;
|
||
|
double c;
|
||
|
|
||
|
n2 = (len >> 1);
|
||
|
c = 2.0 / (len - 1.0);
|
||
|
|
||
|
if (len & 1) {
|
||
|
for(i=0; i<n2; i++) {
|
||
|
w = c - i - 1.0;
|
||
|
w = 1.0 - (w * w);
|
||
|
w_data[i] = data[i] * w;
|
||
|
w_data[len-1-i] = data[len-1-i] * w;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
w_data+=n2;
|
||
|
data+=n2;
|
||
|
for(i=0; i<n2; i++) {
|
||
|
w = c - n2 + i;
|
||
|
w = 1.0 - (w * w);
|
||
|
w_data[-i-1] = data[-i-1] * w;
|
||
|
w_data[+i ] = data[+i ] * w;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate autocorrelation data from audio samples
|
||
|
* A Welch window function is applied before calculation.
|
||
|
*/
|
||
|
static void lpc_compute_autocorr_c(const double *data, int len, int lag,
|
||
|
double *autoc)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for(j=0; j<lag; j+=2){
|
||
|
double sum0 = 1.0, sum1 = 1.0;
|
||
|
for(i=j; i<len; i++){
|
||
|
sum0 += data[i] * data[i-j];
|
||
|
sum1 += data[i] * data[i-j-1];
|
||
|
}
|
||
|
autoc[j ] = sum0;
|
||
|
autoc[j+1] = sum1;
|
||
|
}
|
||
|
|
||
|
if(j==lag){
|
||
|
double sum = 1.0;
|
||
|
for(i=j-1; i<len; i+=2){
|
||
|
sum += data[i ] * data[i-j ]
|
||
|
+ data[i+1] * data[i-j+1];
|
||
|
}
|
||
|
autoc[j] = sum;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Quantize LPC coefficients
|
||
|
*/
|
||
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
|
||
|
int32_t *lpc_out, int *shift, int min_shift,
|
||
|
int max_shift, int zero_shift)
|
||
|
{
|
||
|
int i;
|
||
|
double cmax, error;
|
||
|
int32_t qmax;
|
||
|
int sh;
|
||
|
|
||
|
/* define maximum levels */
|
||
|
qmax = (1 << (precision - 1)) - 1;
|
||
|
|
||
|
/* find maximum coefficient value */
|
||
|
cmax = 0.0;
|
||
|
for(i=0; i<order; i++) {
|
||
|
cmax= FFMAX(cmax, fabs(lpc_in[i]));
|
||
|
}
|
||
|
|
||
|
/* if maximum value quantizes to zero, return all zeros */
|
||
|
if(cmax * (1 << max_shift) < 1.0) {
|
||
|
*shift = zero_shift;
|
||
|
memset(lpc_out, 0, sizeof(int32_t) * order);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* calculate level shift which scales max coeff to available bits */
|
||
|
sh = max_shift;
|
||
|
while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
|
||
|
sh--;
|
||
|
}
|
||
|
|
||
|
/* since negative shift values are unsupported in decoder, scale down
|
||
|
coefficients instead */
|
||
|
if(sh == 0 && cmax > qmax) {
|
||
|
double scale = ((double)qmax) / cmax;
|
||
|
for(i=0; i<order; i++) {
|
||
|
lpc_in[i] *= scale;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* output quantized coefficients and level shift */
|
||
|
error=0;
|
||
|
for(i=0; i<order; i++) {
|
||
|
error -= lpc_in[i] * (1 << sh);
|
||
|
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
|
||
|
error -= lpc_out[i];
|
||
|
}
|
||
|
*shift = sh;
|
||
|
}
|
||
|
|
||
|
static int estimate_best_order(double *ref, int min_order, int max_order)
|
||
|
{
|
||
|
int i, est;
|
||
|
|
||
|
est = min_order;
|
||
|
for(i=max_order-1; i>=min_order-1; i--) {
|
||
|
if(ref[i] > 0.10) {
|
||
|
est = i+1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return est;
|
||
|
}
|
||
|
|
||
|
int ff_lpc_calc_ref_coefs(LPCContext *s,
|
||
|
const int32_t *samples, int order, double *ref)
|
||
|
{
|
||
|
double autoc[MAX_LPC_ORDER + 1];
|
||
|
|
||
|
s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
|
||
|
s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
|
||
|
compute_ref_coefs(autoc, order, ref, NULL);
|
||
|
|
||
|
return order;
|
||
|
}
|
||
|
|
||
|
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
|
||
|
int order, double *ref)
|
||
|
{
|
||
|
int i;
|
||
|
double signal = 0.0f, avg_err = 0.0f;
|
||
|
double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
|
||
|
const double a = 0.5f, b = 1.0f - a;
|
||
|
|
||
|
/* Apply windowing */
|
||
|
for (i = 0; i <= len / 2; i++) {
|
||
|
double weight = a - b*cos((2*M_PI*i)/(len - 1));
|
||
|
s->windowed_samples[i] = weight*samples[i];
|
||
|
s->windowed_samples[len-1-i] = weight*samples[len-1-i];
|
||
|
}
|
||
|
|
||
|
s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
|
||
|
signal = autoc[0];
|
||
|
compute_ref_coefs(autoc, order, ref, error);
|
||
|
for (i = 0; i < order; i++)
|
||
|
avg_err = (avg_err + error[i])/2.0f;
|
||
|
return avg_err ? signal/avg_err : NAN;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate LPC coefficients for multiple orders
|
||
|
*
|
||
|
* @param lpc_type LPC method for determining coefficients,
|
||
|
* see #FFLPCType for details
|
||
|
*/
|
||
|
int ff_lpc_calc_coefs(LPCContext *s,
|
||
|
const int32_t *samples, int blocksize, int min_order,
|
||
|
int max_order, int precision,
|
||
|
int32_t coefs[][MAX_LPC_ORDER], int *shift,
|
||
|
enum FFLPCType lpc_type, int lpc_passes,
|
||
|
int omethod, int min_shift, int max_shift, int zero_shift)
|
||
|
{
|
||
|
double autoc[MAX_LPC_ORDER+1];
|
||
|
double ref[MAX_LPC_ORDER] = { 0 };
|
||
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
||
|
int i, j, pass = 0;
|
||
|
int opt_order;
|
||
|
|
||
|
av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
|
||
|
lpc_type > FF_LPC_TYPE_FIXED);
|
||
|
av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
|
||
|
|
||
|
/* reinit LPC context if parameters have changed */
|
||
|
if (blocksize != s->blocksize || max_order != s->max_order ||
|
||
|
lpc_type != s->lpc_type) {
|
||
|
ff_lpc_end(s);
|
||
|
ff_lpc_init(s, blocksize, max_order, lpc_type);
|
||
|
}
|
||
|
|
||
|
if(lpc_passes <= 0)
|
||
|
lpc_passes = 2;
|
||
|
|
||
|
if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
|
||
|
s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
|
||
|
|
||
|
s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
|
||
|
|
||
|
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
|
||
|
|
||
|
for(i=0; i<max_order; i++)
|
||
|
ref[i] = fabs(lpc[i][i]);
|
||
|
|
||
|
pass++;
|
||
|
}
|
||
|
|
||
|
if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
|
||
|
LLSModel *m = s->lls_models;
|
||
|
LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
|
||
|
double av_uninit(weight);
|
||
|
memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
|
||
|
|
||
|
for(j=0; j<max_order; j++)
|
||
|
m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
|
||
|
|
||
|
for(; pass<lpc_passes; pass++){
|
||
|
avpriv_init_lls(&m[pass&1], max_order);
|
||
|
|
||
|
weight=0;
|
||
|
for(i=max_order; i<blocksize; i++){
|
||
|
for(j=0; j<=max_order; j++)
|
||
|
var[j]= samples[i-j];
|
||
|
|
||
|
if(pass){
|
||
|
double eval, inv, rinv;
|
||
|
eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
|
||
|
eval= (512>>pass) + fabs(eval - var[0]);
|
||
|
inv = 1/eval;
|
||
|
rinv = sqrt(inv);
|
||
|
for(j=0; j<=max_order; j++)
|
||
|
var[j] *= rinv;
|
||
|
weight += inv;
|
||
|
}else
|
||
|
weight++;
|
||
|
|
||
|
m[pass&1].update_lls(&m[pass&1], var);
|
||
|
}
|
||
|
avpriv_solve_lls(&m[pass&1], 0.001, 0);
|
||
|
}
|
||
|
|
||
|
for(i=0; i<max_order; i++){
|
||
|
for(j=0; j<max_order; j++)
|
||
|
lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
|
||
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
|
||
|
}
|
||
|
for(i=max_order-1; i>0; i--)
|
||
|
ref[i] = ref[i-1] - ref[i];
|
||
|
}
|
||
|
|
||
|
opt_order = max_order;
|
||
|
|
||
|
if(omethod == ORDER_METHOD_EST) {
|
||
|
opt_order = estimate_best_order(ref, min_order, max_order);
|
||
|
i = opt_order-1;
|
||
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
|
||
|
min_shift, max_shift, zero_shift);
|
||
|
} else {
|
||
|
for(i=min_order-1; i<max_order; i++) {
|
||
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
|
||
|
min_shift, max_shift, zero_shift);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return opt_order;
|
||
|
}
|
||
|
|
||
|
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
|
||
|
enum FFLPCType lpc_type)
|
||
|
{
|
||
|
s->blocksize = blocksize;
|
||
|
s->max_order = max_order;
|
||
|
s->lpc_type = lpc_type;
|
||
|
|
||
|
s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
|
||
|
sizeof(*s->windowed_samples));
|
||
|
if (!s->windowed_buffer)
|
||
|
return AVERROR(ENOMEM);
|
||
|
s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
|
||
|
|
||
|
s->lpc_apply_welch_window = lpc_apply_welch_window_c;
|
||
|
s->lpc_compute_autocorr = lpc_compute_autocorr_c;
|
||
|
|
||
|
if (ARCH_X86)
|
||
|
ff_lpc_init_x86(s);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
av_cold void ff_lpc_end(LPCContext *s)
|
||
|
{
|
||
|
av_freep(&s->windowed_buffer);
|
||
|
}
|