583 lines
19 KiB
C
583 lines
19 KiB
C
|
/*
|
||
|
* Copyright (c) 2015 Stupeflix
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* Generate one palette for a whole video stream.
|
||
|
*/
|
||
|
|
||
|
#include "libavutil/avassert.h"
|
||
|
#include "libavutil/internal.h"
|
||
|
#include "libavutil/opt.h"
|
||
|
#include "libavutil/qsort.h"
|
||
|
#include "libavutil/intreadwrite.h"
|
||
|
#include "avfilter.h"
|
||
|
#include "internal.h"
|
||
|
|
||
|
/* Reference a color and how much it's used */
|
||
|
struct color_ref {
|
||
|
uint32_t color;
|
||
|
uint64_t count;
|
||
|
};
|
||
|
|
||
|
/* Store a range of colors */
|
||
|
struct range_box {
|
||
|
uint32_t color; // average color
|
||
|
int64_t variance; // overall variance of the box (how much the colors are spread)
|
||
|
int start; // index in PaletteGenContext->refs
|
||
|
int len; // number of referenced colors
|
||
|
int sorted_by; // whether range of colors is sorted by red (0), green (1) or blue (2)
|
||
|
};
|
||
|
|
||
|
struct hist_node {
|
||
|
struct color_ref *entries;
|
||
|
int nb_entries;
|
||
|
};
|
||
|
|
||
|
enum {
|
||
|
STATS_MODE_ALL_FRAMES,
|
||
|
STATS_MODE_DIFF_FRAMES,
|
||
|
STATS_MODE_SINGLE_FRAMES,
|
||
|
NB_STATS_MODE
|
||
|
};
|
||
|
|
||
|
#define NBITS 5
|
||
|
#define HIST_SIZE (1<<(3*NBITS))
|
||
|
|
||
|
typedef struct PaletteGenContext {
|
||
|
const AVClass *class;
|
||
|
|
||
|
int max_colors;
|
||
|
int reserve_transparent;
|
||
|
int stats_mode;
|
||
|
|
||
|
AVFrame *prev_frame; // previous frame used for the diff stats_mode
|
||
|
struct hist_node histogram[HIST_SIZE]; // histogram/hashtable of the colors
|
||
|
struct color_ref **refs; // references of all the colors used in the stream
|
||
|
int nb_refs; // number of color references (or number of different colors)
|
||
|
struct range_box boxes[256]; // define the segmentation of the colorspace (the final palette)
|
||
|
int nb_boxes; // number of boxes (increase will segmenting them)
|
||
|
int palette_pushed; // if the palette frame is pushed into the outlink or not
|
||
|
uint8_t transparency_color[4]; // background color for transparency
|
||
|
} PaletteGenContext;
|
||
|
|
||
|
#define OFFSET(x) offsetof(PaletteGenContext, x)
|
||
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
|
||
|
static const AVOption palettegen_options[] = {
|
||
|
{ "max_colors", "set the maximum number of colors to use in the palette", OFFSET(max_colors), AV_OPT_TYPE_INT, {.i64=256}, 4, 256, FLAGS },
|
||
|
{ "reserve_transparent", "reserve a palette entry for transparency", OFFSET(reserve_transparent), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
|
||
|
{ "transparency_color", "set a background color for transparency", OFFSET(transparency_color), AV_OPT_TYPE_COLOR, {.str="lime"}, 0, 0, FLAGS },
|
||
|
{ "stats_mode", "set statistics mode", OFFSET(stats_mode), AV_OPT_TYPE_INT, {.i64=STATS_MODE_ALL_FRAMES}, 0, NB_STATS_MODE-1, FLAGS, "mode" },
|
||
|
{ "full", "compute full frame histograms", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_ALL_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
|
||
|
{ "diff", "compute histograms only for the part that differs from previous frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_DIFF_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
|
||
|
{ "single", "compute new histogram for each frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_SINGLE_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" },
|
||
|
{ NULL }
|
||
|
};
|
||
|
|
||
|
AVFILTER_DEFINE_CLASS(palettegen);
|
||
|
|
||
|
static int query_formats(AVFilterContext *ctx)
|
||
|
{
|
||
|
static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
|
||
|
static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
|
||
|
int ret;
|
||
|
|
||
|
if ((ret = ff_formats_ref(ff_make_format_list(in_fmts) , &ctx->inputs[0]->out_formats)) < 0)
|
||
|
return ret;
|
||
|
if ((ret = ff_formats_ref(ff_make_format_list(out_fmts), &ctx->outputs[0]->in_formats)) < 0)
|
||
|
return ret;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
typedef int (*cmp_func)(const void *, const void *);
|
||
|
|
||
|
#define DECLARE_CMP_FUNC(name, pos) \
|
||
|
static int cmp_##name(const void *pa, const void *pb) \
|
||
|
{ \
|
||
|
const struct color_ref * const *a = pa; \
|
||
|
const struct color_ref * const *b = pb; \
|
||
|
return ((*a)->color >> (8 * (2 - (pos))) & 0xff) \
|
||
|
- ((*b)->color >> (8 * (2 - (pos))) & 0xff); \
|
||
|
}
|
||
|
|
||
|
DECLARE_CMP_FUNC(r, 0)
|
||
|
DECLARE_CMP_FUNC(g, 1)
|
||
|
DECLARE_CMP_FUNC(b, 2)
|
||
|
|
||
|
static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b};
|
||
|
|
||
|
/**
|
||
|
* Simple color comparison for sorting the final palette
|
||
|
*/
|
||
|
static int cmp_color(const void *a, const void *b)
|
||
|
{
|
||
|
const struct range_box *box1 = a;
|
||
|
const struct range_box *box2 = b;
|
||
|
return FFDIFFSIGN(box1->color , box2->color);
|
||
|
}
|
||
|
|
||
|
static av_always_inline int diff(const uint32_t a, const uint32_t b)
|
||
|
{
|
||
|
const uint8_t c1[] = {a >> 16 & 0xff, a >> 8 & 0xff, a & 0xff};
|
||
|
const uint8_t c2[] = {b >> 16 & 0xff, b >> 8 & 0xff, b & 0xff};
|
||
|
const int dr = c1[0] - c2[0];
|
||
|
const int dg = c1[1] - c2[1];
|
||
|
const int db = c1[2] - c2[2];
|
||
|
return dr*dr + dg*dg + db*db;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Find the next box to split: pick the one with the highest variance
|
||
|
*/
|
||
|
static int get_next_box_id_to_split(PaletteGenContext *s)
|
||
|
{
|
||
|
int box_id, i, best_box_id = -1;
|
||
|
int64_t max_variance = -1;
|
||
|
|
||
|
if (s->nb_boxes == s->max_colors - s->reserve_transparent)
|
||
|
return -1;
|
||
|
|
||
|
for (box_id = 0; box_id < s->nb_boxes; box_id++) {
|
||
|
struct range_box *box = &s->boxes[box_id];
|
||
|
|
||
|
if (s->boxes[box_id].len >= 2) {
|
||
|
|
||
|
if (box->variance == -1) {
|
||
|
int64_t variance = 0;
|
||
|
|
||
|
for (i = 0; i < box->len; i++) {
|
||
|
const struct color_ref *ref = s->refs[box->start + i];
|
||
|
variance += diff(ref->color, box->color) * ref->count;
|
||
|
}
|
||
|
box->variance = variance;
|
||
|
}
|
||
|
if (box->variance > max_variance) {
|
||
|
best_box_id = box_id;
|
||
|
max_variance = box->variance;
|
||
|
}
|
||
|
} else {
|
||
|
box->variance = -1;
|
||
|
}
|
||
|
}
|
||
|
return best_box_id;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the 32-bit average color for the range of RGB colors enclosed in the
|
||
|
* specified box. Takes into account the weight of each color.
|
||
|
*/
|
||
|
static uint32_t get_avg_color(struct color_ref * const *refs,
|
||
|
const struct range_box *box)
|
||
|
{
|
||
|
int i;
|
||
|
const int n = box->len;
|
||
|
uint64_t r = 0, g = 0, b = 0, div = 0;
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
const struct color_ref *ref = refs[box->start + i];
|
||
|
r += (ref->color >> 16 & 0xff) * ref->count;
|
||
|
g += (ref->color >> 8 & 0xff) * ref->count;
|
||
|
b += (ref->color & 0xff) * ref->count;
|
||
|
div += ref->count;
|
||
|
}
|
||
|
|
||
|
r = r / div;
|
||
|
g = g / div;
|
||
|
b = b / div;
|
||
|
|
||
|
return 0xffU<<24 | r<<16 | g<<8 | b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Split given box in two at position n. The original box becomes the left part
|
||
|
* of the split, and the new index box is the right part.
|
||
|
*/
|
||
|
static void split_box(PaletteGenContext *s, struct range_box *box, int n)
|
||
|
{
|
||
|
struct range_box *new_box = &s->boxes[s->nb_boxes++];
|
||
|
new_box->start = n + 1;
|
||
|
new_box->len = box->start + box->len - new_box->start;
|
||
|
new_box->sorted_by = box->sorted_by;
|
||
|
box->len -= new_box->len;
|
||
|
|
||
|
av_assert0(box->len >= 1);
|
||
|
av_assert0(new_box->len >= 1);
|
||
|
|
||
|
box->color = get_avg_color(s->refs, box);
|
||
|
new_box->color = get_avg_color(s->refs, new_box);
|
||
|
box->variance = -1;
|
||
|
new_box->variance = -1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Write the palette into the output frame.
|
||
|
*/
|
||
|
static void write_palette(AVFilterContext *ctx, AVFrame *out)
|
||
|
{
|
||
|
const PaletteGenContext *s = ctx->priv;
|
||
|
int x, y, box_id = 0;
|
||
|
uint32_t *pal = (uint32_t *)out->data[0];
|
||
|
const int pal_linesize = out->linesize[0] >> 2;
|
||
|
uint32_t last_color = 0;
|
||
|
|
||
|
for (y = 0; y < out->height; y++) {
|
||
|
for (x = 0; x < out->width; x++) {
|
||
|
if (box_id < s->nb_boxes) {
|
||
|
pal[x] = s->boxes[box_id++].color;
|
||
|
if ((x || y) && pal[x] == last_color)
|
||
|
av_log(ctx, AV_LOG_WARNING, "Dupped color: %08"PRIX32"\n", pal[x]);
|
||
|
last_color = pal[x];
|
||
|
} else {
|
||
|
pal[x] = last_color; // pad with last color
|
||
|
}
|
||
|
}
|
||
|
pal += pal_linesize;
|
||
|
}
|
||
|
|
||
|
if (s->reserve_transparent) {
|
||
|
av_assert0(s->nb_boxes < 256);
|
||
|
pal[out->width - pal_linesize - 1] = AV_RB32(&s->transparency_color) >> 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Crawl the histogram to get all the defined colors, and create a linear list
|
||
|
* of them (each color reference entry is a pointer to the value in the
|
||
|
* histogram/hash table).
|
||
|
*/
|
||
|
static struct color_ref **load_color_refs(const struct hist_node *hist, int nb_refs)
|
||
|
{
|
||
|
int i, j, k = 0;
|
||
|
struct color_ref **refs = av_malloc_array(nb_refs, sizeof(*refs));
|
||
|
|
||
|
if (!refs)
|
||
|
return NULL;
|
||
|
|
||
|
for (j = 0; j < HIST_SIZE; j++) {
|
||
|
const struct hist_node *node = &hist[j];
|
||
|
|
||
|
for (i = 0; i < node->nb_entries; i++)
|
||
|
refs[k++] = &node->entries[i];
|
||
|
}
|
||
|
|
||
|
return refs;
|
||
|
}
|
||
|
|
||
|
static double set_colorquant_ratio_meta(AVFrame *out, int nb_out, int nb_in)
|
||
|
{
|
||
|
char buf[32];
|
||
|
const double ratio = (double)nb_out / nb_in;
|
||
|
snprintf(buf, sizeof(buf), "%f", ratio);
|
||
|
av_dict_set(&out->metadata, "lavfi.color_quant_ratio", buf, 0);
|
||
|
return ratio;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Main function implementing the Median Cut Algorithm defined by Paul Heckbert
|
||
|
* in Color Image Quantization for Frame Buffer Display (1982)
|
||
|
*/
|
||
|
static AVFrame *get_palette_frame(AVFilterContext *ctx)
|
||
|
{
|
||
|
AVFrame *out;
|
||
|
PaletteGenContext *s = ctx->priv;
|
||
|
AVFilterLink *outlink = ctx->outputs[0];
|
||
|
double ratio;
|
||
|
int box_id = 0;
|
||
|
struct range_box *box;
|
||
|
|
||
|
/* reference only the used colors from histogram */
|
||
|
s->refs = load_color_refs(s->histogram, s->nb_refs);
|
||
|
if (!s->refs) {
|
||
|
av_log(ctx, AV_LOG_ERROR, "Unable to allocate references for %d different colors\n", s->nb_refs);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* create the palette frame */
|
||
|
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
||
|
if (!out)
|
||
|
return NULL;
|
||
|
out->pts = 0;
|
||
|
|
||
|
/* set first box for 0..nb_refs */
|
||
|
box = &s->boxes[box_id];
|
||
|
box->len = s->nb_refs;
|
||
|
box->sorted_by = -1;
|
||
|
box->color = get_avg_color(s->refs, box);
|
||
|
box->variance = -1;
|
||
|
s->nb_boxes = 1;
|
||
|
|
||
|
while (box && box->len > 1) {
|
||
|
int i, rr, gr, br, longest;
|
||
|
uint64_t median, box_weight = 0;
|
||
|
|
||
|
/* compute the box weight (sum all the weights of the colors in the
|
||
|
* range) and its boundings */
|
||
|
uint8_t min[3] = {0xff, 0xff, 0xff};
|
||
|
uint8_t max[3] = {0x00, 0x00, 0x00};
|
||
|
for (i = box->start; i < box->start + box->len; i++) {
|
||
|
const struct color_ref *ref = s->refs[i];
|
||
|
const uint32_t rgb = ref->color;
|
||
|
const uint8_t r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff;
|
||
|
min[0] = FFMIN(r, min[0]), max[0] = FFMAX(r, max[0]);
|
||
|
min[1] = FFMIN(g, min[1]), max[1] = FFMAX(g, max[1]);
|
||
|
min[2] = FFMIN(b, min[2]), max[2] = FFMAX(b, max[2]);
|
||
|
box_weight += ref->count;
|
||
|
}
|
||
|
|
||
|
/* define the axis to sort by according to the widest range of colors */
|
||
|
rr = max[0] - min[0];
|
||
|
gr = max[1] - min[1];
|
||
|
br = max[2] - min[2];
|
||
|
longest = 1; // pick green by default (the color the eye is the most sensitive to)
|
||
|
if (br >= rr && br >= gr) longest = 2;
|
||
|
if (rr >= gr && rr >= br) longest = 0;
|
||
|
if (gr >= rr && gr >= br) longest = 1; // prefer green again
|
||
|
|
||
|
ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x] sort by %c (already sorted:%c) ",
|
||
|
box_id, box->start, box->start + box->len - 1, box->len, box_weight,
|
||
|
rr, gr, br, "rgb"[longest], box->sorted_by == longest ? 'y':'n');
|
||
|
|
||
|
/* sort the range by its longest axis if it's not already sorted */
|
||
|
if (box->sorted_by != longest) {
|
||
|
cmp_func cmpf = cmp_funcs[longest];
|
||
|
AV_QSORT(&s->refs[box->start], box->len, const struct color_ref *, cmpf);
|
||
|
box->sorted_by = longest;
|
||
|
}
|
||
|
|
||
|
/* locate the median where to split */
|
||
|
median = (box_weight + 1) >> 1;
|
||
|
box_weight = 0;
|
||
|
/* if you have 2 boxes, the maximum is actually #0: you must have at
|
||
|
* least 1 color on each side of the split, hence the -2 */
|
||
|
for (i = box->start; i < box->start + box->len - 2; i++) {
|
||
|
box_weight += s->refs[i]->count;
|
||
|
if (box_weight > median)
|
||
|
break;
|
||
|
}
|
||
|
ff_dlog(ctx, "split @ i=%-6d with w=%-6"PRIu64" (target=%6"PRIu64")\n", i, box_weight, median);
|
||
|
split_box(s, box, i);
|
||
|
|
||
|
box_id = get_next_box_id_to_split(s);
|
||
|
box = box_id >= 0 ? &s->boxes[box_id] : NULL;
|
||
|
}
|
||
|
|
||
|
ratio = set_colorquant_ratio_meta(out, s->nb_boxes, s->nb_refs);
|
||
|
av_log(ctx, AV_LOG_INFO, "%d%s colors generated out of %d colors; ratio=%f\n",
|
||
|
s->nb_boxes, s->reserve_transparent ? "(+1)" : "", s->nb_refs, ratio);
|
||
|
|
||
|
qsort(s->boxes, s->nb_boxes, sizeof(*s->boxes), cmp_color);
|
||
|
|
||
|
write_palette(ctx, out);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Hashing function for the color.
|
||
|
* It keeps the NBITS least significant bit of each component to make it
|
||
|
* "random" even if the scene doesn't have much different colors.
|
||
|
*/
|
||
|
static inline unsigned color_hash(uint32_t color)
|
||
|
{
|
||
|
const uint8_t r = color >> 16 & ((1<<NBITS)-1);
|
||
|
const uint8_t g = color >> 8 & ((1<<NBITS)-1);
|
||
|
const uint8_t b = color & ((1<<NBITS)-1);
|
||
|
return r<<(NBITS*2) | g<<NBITS | b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Locate the color in the hash table and increment its counter.
|
||
|
*/
|
||
|
static int color_inc(struct hist_node *hist, uint32_t color)
|
||
|
{
|
||
|
int i;
|
||
|
const unsigned hash = color_hash(color);
|
||
|
struct hist_node *node = &hist[hash];
|
||
|
struct color_ref *e;
|
||
|
|
||
|
for (i = 0; i < node->nb_entries; i++) {
|
||
|
e = &node->entries[i];
|
||
|
if (e->color == color) {
|
||
|
e->count++;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
|
||
|
sizeof(*node->entries), NULL);
|
||
|
if (!e)
|
||
|
return AVERROR(ENOMEM);
|
||
|
e->color = color;
|
||
|
e->count = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Update histogram when pixels differ from previous frame.
|
||
|
*/
|
||
|
static int update_histogram_diff(struct hist_node *hist,
|
||
|
const AVFrame *f1, const AVFrame *f2)
|
||
|
{
|
||
|
int x, y, ret, nb_diff_colors = 0;
|
||
|
|
||
|
for (y = 0; y < f1->height; y++) {
|
||
|
const uint32_t *p = (const uint32_t *)(f1->data[0] + y*f1->linesize[0]);
|
||
|
const uint32_t *q = (const uint32_t *)(f2->data[0] + y*f2->linesize[0]);
|
||
|
|
||
|
for (x = 0; x < f1->width; x++) {
|
||
|
if (p[x] == q[x])
|
||
|
continue;
|
||
|
ret = color_inc(hist, p[x]);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
nb_diff_colors += ret;
|
||
|
}
|
||
|
}
|
||
|
return nb_diff_colors;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Simple histogram of the frame.
|
||
|
*/
|
||
|
static int update_histogram_frame(struct hist_node *hist, const AVFrame *f)
|
||
|
{
|
||
|
int x, y, ret, nb_diff_colors = 0;
|
||
|
|
||
|
for (y = 0; y < f->height; y++) {
|
||
|
const uint32_t *p = (const uint32_t *)(f->data[0] + y*f->linesize[0]);
|
||
|
|
||
|
for (x = 0; x < f->width; x++) {
|
||
|
ret = color_inc(hist, p[x]);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
nb_diff_colors += ret;
|
||
|
}
|
||
|
}
|
||
|
return nb_diff_colors;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Update the histogram for each passing frame. No frame will be pushed here.
|
||
|
*/
|
||
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||
|
{
|
||
|
AVFilterContext *ctx = inlink->dst;
|
||
|
PaletteGenContext *s = ctx->priv;
|
||
|
int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in)
|
||
|
: update_histogram_frame(s->histogram, in);
|
||
|
|
||
|
if (ret > 0)
|
||
|
s->nb_refs += ret;
|
||
|
|
||
|
if (s->stats_mode == STATS_MODE_DIFF_FRAMES) {
|
||
|
av_frame_free(&s->prev_frame);
|
||
|
s->prev_frame = in;
|
||
|
} else if (s->stats_mode == STATS_MODE_SINGLE_FRAMES) {
|
||
|
AVFrame *out;
|
||
|
int i;
|
||
|
|
||
|
out = get_palette_frame(ctx);
|
||
|
out->pts = in->pts;
|
||
|
av_frame_free(&in);
|
||
|
ret = ff_filter_frame(ctx->outputs[0], out);
|
||
|
for (i = 0; i < HIST_SIZE; i++)
|
||
|
av_freep(&s->histogram[i].entries);
|
||
|
av_freep(&s->refs);
|
||
|
s->nb_refs = 0;
|
||
|
s->nb_boxes = 0;
|
||
|
memset(s->boxes, 0, sizeof(s->boxes));
|
||
|
memset(s->histogram, 0, sizeof(s->histogram));
|
||
|
} else {
|
||
|
av_frame_free(&in);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns only one frame at the end containing the full palette.
|
||
|
*/
|
||
|
static int request_frame(AVFilterLink *outlink)
|
||
|
{
|
||
|
AVFilterContext *ctx = outlink->src;
|
||
|
AVFilterLink *inlink = ctx->inputs[0];
|
||
|
PaletteGenContext *s = ctx->priv;
|
||
|
int r;
|
||
|
|
||
|
r = ff_request_frame(inlink);
|
||
|
if (r == AVERROR_EOF && !s->palette_pushed && s->nb_refs && s->stats_mode != STATS_MODE_SINGLE_FRAMES) {
|
||
|
r = ff_filter_frame(outlink, get_palette_frame(ctx));
|
||
|
s->palette_pushed = 1;
|
||
|
return r;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The output is one simple 16x16 squared-pixels palette.
|
||
|
*/
|
||
|
static int config_output(AVFilterLink *outlink)
|
||
|
{
|
||
|
outlink->w = outlink->h = 16;
|
||
|
outlink->sample_aspect_ratio = av_make_q(1, 1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static av_cold void uninit(AVFilterContext *ctx)
|
||
|
{
|
||
|
int i;
|
||
|
PaletteGenContext *s = ctx->priv;
|
||
|
|
||
|
for (i = 0; i < HIST_SIZE; i++)
|
||
|
av_freep(&s->histogram[i].entries);
|
||
|
av_freep(&s->refs);
|
||
|
av_frame_free(&s->prev_frame);
|
||
|
}
|
||
|
|
||
|
static const AVFilterPad palettegen_inputs[] = {
|
||
|
{
|
||
|
.name = "default",
|
||
|
.type = AVMEDIA_TYPE_VIDEO,
|
||
|
.filter_frame = filter_frame,
|
||
|
},
|
||
|
{ NULL }
|
||
|
};
|
||
|
|
||
|
static const AVFilterPad palettegen_outputs[] = {
|
||
|
{
|
||
|
.name = "default",
|
||
|
.type = AVMEDIA_TYPE_VIDEO,
|
||
|
.config_props = config_output,
|
||
|
.request_frame = request_frame,
|
||
|
},
|
||
|
{ NULL }
|
||
|
};
|
||
|
|
||
|
AVFilter ff_vf_palettegen = {
|
||
|
.name = "palettegen",
|
||
|
.description = NULL_IF_CONFIG_SMALL("Find the optimal palette for a given stream."),
|
||
|
.priv_size = sizeof(PaletteGenContext),
|
||
|
.uninit = uninit,
|
||
|
.query_formats = query_formats,
|
||
|
.inputs = palettegen_inputs,
|
||
|
.outputs = palettegen_outputs,
|
||
|
.priv_class = &palettegen_class,
|
||
|
};
|