FFmpeg4/libavcodec/rv34.c

1828 lines
64 KiB
C
Raw Normal View History

2023-07-02 12:20:28 +00:00
/*
* RV30/40 decoder common data
* Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* RV30/40 decoder common data
*/
#include "libavutil/imgutils.h"
#include "libavutil/internal.h"
#include "avcodec.h"
#include "error_resilience.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "golomb.h"
#include "internal.h"
#include "mathops.h"
#include "mpeg_er.h"
#include "qpeldsp.h"
#include "rectangle.h"
#include "thread.h"
#include "rv34vlc.h"
#include "rv34data.h"
#include "rv34.h"
static inline void ZERO8x2(void* dst, int stride)
{
fill_rectangle(dst, 1, 2, stride, 0, 4);
fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
}
/** translation of RV30/40 macroblock types to lavc ones */
static const int rv34_mb_type_to_lavc[12] = {
MB_TYPE_INTRA,
MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
MB_TYPE_16x16 | MB_TYPE_L0,
MB_TYPE_8x8 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L1,
MB_TYPE_SKIP,
MB_TYPE_DIRECT2 | MB_TYPE_16x16,
MB_TYPE_16x8 | MB_TYPE_L0,
MB_TYPE_8x16 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L0L1,
MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
};
static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
static int rv34_decode_mv(RV34DecContext *r, int block_type);
/**
* @name RV30/40 VLC generating functions
* @{
*/
static const int table_offs[] = {
0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
};
static VLC_TYPE table_data[117592][2];
/**
* Generate VLC from codeword lengths.
* @param bits codeword lengths (zeroes are accepted)
* @param size length of input data
* @param vlc output VLC
* @param insyms symbols for input codes (NULL for default ones)
* @param num VLC table number (for static initialization)
*/
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
const int num)
{
int i;
int counts[17] = {0}, codes[17];
uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
uint8_t bits2[MAX_VLC_SIZE];
int maxbits = 0, realsize = 0;
for(i = 0; i < size; i++){
if(bits[i]){
bits2[realsize] = bits[i];
syms[realsize] = insyms ? insyms[i] : i;
realsize++;
maxbits = FFMAX(maxbits, bits[i]);
counts[bits[i]]++;
}
}
codes[0] = 0;
for(i = 0; i < 16; i++)
codes[i+1] = (codes[i] + counts[i]) << 1;
for(i = 0; i < realsize; i++)
cw[i] = codes[bits2[i]]++;
vlc->table = &table_data[table_offs[num]];
vlc->table_allocated = table_offs[num + 1] - table_offs[num];
ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
bits2, 1, 1,
cw, 2, 2,
syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
}
/**
* Initialize all tables.
*/
static av_cold void rv34_init_tables(void)
{
int i, j, k;
for(i = 0; i < NUM_INTRA_TABLES; i++){
for(j = 0; j < 2; j++){
rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
for(k = 0; k < 4; k++){
rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
}
}
for(j = 0; j < 4; j++){
rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
}
rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
}
for(i = 0; i < NUM_INTER_TABLES; i++){
rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
for(j = 0; j < 4; j++){
rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
}
for(j = 0; j < 2; j++){
rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
}
rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
}
}
/** @} */ // vlc group
/**
* @name RV30/40 4x4 block decoding functions
* @{
*/
/**
* Decode coded block pattern.
*/
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
{
int pattern, code, cbp=0;
int ones;
static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
static const int shifts[4] = { 0, 2, 8, 10 };
const int *curshift = shifts;
int i, t, mask;
code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
pattern = code & 0xF;
code >>= 4;
ones = rv34_count_ones[pattern];
for(mask = 8; mask; mask >>= 1, curshift++){
if(pattern & mask)
cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
}
for(i = 0; i < 4; i++){
t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
if(t == 1)
cbp |= cbp_masks[get_bits1(gb)] << i;
if(t == 2)
cbp |= cbp_masks[2] << i;
}
return cbp;
}
/**
* Get one coefficient value from the bitstream and store it.
*/
static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
{
if(coef){
if(coef == esc){
coef = get_vlc2(gb, vlc->table, 9, 2);
if(coef > 23){
coef -= 23;
coef = 22 + ((1 << coef) | get_bits(gb, coef));
}
coef += esc;
}
if(get_bits1(gb))
coef = -coef;
*dst = (coef*q + 8) >> 4;
}
}
/**
* Decode 2x2 subblock of coefficients.
*/
static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
{
int flags = modulo_three_table[code];
decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
if(is_block2){
decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
}else{
decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
}
decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
}
/**
* Decode a single coefficient.
*/
static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
{
int coeff = modulo_three_table[code] >> 6;
decode_coeff(dst, coeff, 3, gb, vlc, q);
}
static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
int q_dc, int q_ac1, int q_ac2)
{
int flags = modulo_three_table[code];
decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
}
/**
* Decode coefficients for 4x4 block.
*
* This is done by filling 2x2 subblocks with decoded coefficients
* in this order (the same for subblocks and subblock coefficients):
* o--o
* /
* /
* o--o
*/
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
{
int code, pattern, has_ac = 1;
code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
pattern = code & 0x7;
code >>= 3;
if (modulo_three_table[code] & 0x3F) {
decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
} else {
decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
if (!pattern)
return 0;
has_ac = 0;
}
if(pattern & 4){
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
}
if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
}
if(pattern & 1){
code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
}
return has_ac | pattern;
}
/**
* @name RV30/40 bitstream parsing
* @{
*/
/**
* Decode starting slice position.
* @todo Maybe replace with ff_h263_decode_mba() ?
*/
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
{
int i;
for(i = 0; i < 5; i++)
if(rv34_mb_max_sizes[i] >= mb_size - 1)
break;
return rv34_mb_bits_sizes[i];
}
/**
* Select VLC set for decoding from current quantizer, modifier and frame type.
*/
static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
{
if(mod == 2 && quant < 19) quant += 10;
else if(mod && quant < 26) quant += 5;
return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
: &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
}
/**
* Decode intra macroblock header and return CBP in case of success, -1 otherwise.
*/
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int t;
r->is16 = get_bits1(gb);
if(r->is16){
s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
r->block_type = RV34_MB_TYPE_INTRA16x16;
t = get_bits(gb, 2);
fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
r->luma_vlc = 2;
}else{
if(!r->rv30){
if(!get_bits1(gb))
av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
}
s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
r->block_type = RV34_MB_TYPE_INTRA;
if(r->decode_intra_types(r, gb, intra_types) < 0)
return -1;
r->luma_vlc = 1;
}
r->chroma_vlc = 0;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
}
/**
* Decode inter macroblock header and return CBP in case of success, -1 otherwise.
*/
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int i, t;
r->block_type = r->decode_mb_info(r);
if(r->block_type == -1)
return -1;
s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
r->mb_type[mb_pos] = r->block_type;
if(r->block_type == RV34_MB_SKIP){
if(s->pict_type == AV_PICTURE_TYPE_P)
r->mb_type[mb_pos] = RV34_MB_P_16x16;
if(s->pict_type == AV_PICTURE_TYPE_B)
r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
}
r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
if (rv34_decode_mv(r, r->block_type) < 0)
return -1;
if(r->block_type == RV34_MB_SKIP){
fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
return 0;
}
r->chroma_vlc = 1;
r->luma_vlc = 0;
if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
if(r->is16){
t = get_bits(gb, 2);
fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
r->luma_vlc = 2;
}else{
if(r->decode_intra_types(r, gb, intra_types) < 0)
return -1;
r->luma_vlc = 1;
}
r->chroma_vlc = 0;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
}else{
for(i = 0; i < 16; i++)
intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
r->is16 = 1;
r->chroma_vlc = 1;
r->luma_vlc = 2;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
}
}
return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
}
/** @} */ //bitstream functions
/**
* @name motion vector related code (prediction, reconstruction, motion compensation)
* @{
*/
/** macroblock partition width in 8x8 blocks */
static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
/** macroblock partition height in 8x8 blocks */
static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
/** availability index for subblocks */
static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
/**
* motion vector prediction
*
* Motion prediction performed for the block by using median prediction of
* motion vectors from the left, top and right top blocks but in corner cases
* some other vectors may be used instead.
*/
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
{
MpegEncContext *s = &r->s;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2] = {0}, B[2], C[2];
int i, j;
int mx, my;
int* avail = r->avail_cache + avail_indexes[subblock_no];
int c_off = part_sizes_w[block_type];
mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
if(subblock_no == 3)
c_off = -1;
if(avail[-1]){
A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
}
if(avail[-4]){
B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
}else{
B[0] = A[0];
B[1] = A[1];
}
if(!avail[c_off-4]){
if(avail[-4] && (avail[-1] || r->rv30)){
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
}else{
C[0] = A[0];
C[1] = A[1];
}
}else{
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
}
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
mx += r->dmv[dmv_no][0];
my += r->dmv[dmv_no][1];
for(j = 0; j < part_sizes_h[block_type]; j++){
for(i = 0; i < part_sizes_w[block_type]; i++){
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
}
}
}
#define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
/**
* Calculate motion vector component that should be added for direct blocks.
*/
static int calc_add_mv(RV34DecContext *r, int dir, int val)
{
int mul = dir ? -r->mv_weight2 : r->mv_weight1;
return (int)(val * (SUINT)mul + 0x2000) >> 14;
}
/**
* Predict motion vector for B-frame macroblock.
*/
static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
int A_avail, int B_avail, int C_avail,
int *mx, int *my)
{
if(A_avail + B_avail + C_avail != 3){
*mx = A[0] + B[0] + C[0];
*my = A[1] + B[1] + C[1];
if(A_avail + B_avail + C_avail == 2){
*mx /= 2;
*my /= 2;
}
}else{
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
}
}
/**
* motion vector prediction for B-frames
*/
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
{
MpegEncContext *s = &r->s;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
int has_A = 0, has_B = 0, has_C = 0;
int mx, my;
int i, j;
Picture *cur_pic = s->current_picture_ptr;
const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
int type = cur_pic->mb_type[mb_pos];
if((r->avail_cache[6-1] & type) & mask){
A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
has_A = 1;
}
if((r->avail_cache[6-4] & type) & mask){
B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
has_B = 1;
}
if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
has_C = 1;
}else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
has_C = 1;
}
rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
mx += r->dmv[dir][0];
my += r->dmv[dir][1];
for(j = 0; j < 2; j++){
for(i = 0; i < 2; i++){
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
}
}
if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
}
}
/**
* motion vector prediction - RV3 version
*/
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
{
MpegEncContext *s = &r->s;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2] = {0}, B[2], C[2];
int i, j, k;
int mx, my;
int* avail = r->avail_cache + avail_indexes[0];
if(avail[-1]){
A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
}
if(avail[-4]){
B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
}else{
B[0] = A[0];
B[1] = A[1];
}
if(!avail[-4 + 2]){
if(avail[-4] && (avail[-1])){
C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
}else{
C[0] = A[0];
C[1] = A[1];
}
}else{
C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
}
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
mx += r->dmv[0][0];
my += r->dmv[0][1];
for(j = 0; j < 2; j++){
for(i = 0; i < 2; i++){
for(k = 0; k < 2; k++){
s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
}
}
}
}
static const int chroma_coeffs[3] = { 0, 3, 5 };
/**
* generic motion compensation function
*
* @param r decoder context
* @param block_type type of the current block
* @param xoff horizontal offset from the start of the current block
* @param yoff vertical offset from the start of the current block
* @param mv_off offset to the motion vector information
* @param width width of the current partition in 8x8 blocks
* @param height height of the current partition in 8x8 blocks
* @param dir motion compensation direction (i.e. from the last or the next reference frame)
* @param thirdpel motion vectors are specified in 1/3 of pixel
* @param qpel_mc a set of functions used to perform luma motion compensation
* @param chroma_mc a set of functions used to perform chroma motion compensation
*/
static inline void rv34_mc(RV34DecContext *r, const int block_type,
const int xoff, const int yoff, int mv_off,
const int width, const int height, int dir,
const int thirdpel, int weighted,
qpel_mc_func (*qpel_mc)[16],
h264_chroma_mc_func (*chroma_mc))
{
MpegEncContext *s = &r->s;
uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
int is16x16 = 1;
int emu = 0;
if(thirdpel){
int chroma_mx, chroma_my;
mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
}else{
int cx, cy;
mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
umx = cx >> 2;
umy = cy >> 2;
uvmx = (cx & 3) << 1;
uvmy = (cy & 3) << 1;
//due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
if(uvmx == 6 && uvmy == 6)
uvmx = uvmy = 4;
}
if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
/* wait for the referenced mb row to be finished */
int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
ff_thread_await_progress(f, mb_row, 0);
}
dxy = ly*4 + lx;
srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
src_x = s->mb_x * 16 + xoff + mx;
src_y = s->mb_y * 16 + yoff + my;
uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
(unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
(unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
srcY -= 2 + 2*s->linesize;
s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY,
s->linesize, s->linesize,
(width << 3) + 6, (height << 3) + 6,
src_x - 2, src_y - 2,
s->h_edge_pos, s->v_edge_pos);
srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
emu = 1;
}
if(!weighted){
Y = s->dest[0] + xoff + yoff *s->linesize;
U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
}else{
Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
}
if(block_type == RV34_MB_P_16x8){
qpel_mc[1][dxy](Y, srcY, s->linesize);
Y += 8;
srcY += 8;
}else if(block_type == RV34_MB_P_8x16){
qpel_mc[1][dxy](Y, srcY, s->linesize);
Y += 8 * s->linesize;
srcY += 8 * s->linesize;
}
is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
if (emu) {
uint8_t *uvbuf = s->sc.edge_emu_buffer;
s->vdsp.emulated_edge_mc(uvbuf, srcU,
s->uvlinesize, s->uvlinesize,
(width << 2) + 1, (height << 2) + 1,
uvsrc_x, uvsrc_y,
s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
uvbuf += 9*s->uvlinesize;
s->vdsp.emulated_edge_mc(uvbuf, srcV,
s->uvlinesize, s->uvlinesize,
(width << 2) + 1, (height << 2) + 1,
uvsrc_x, uvsrc_y,
s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcV = uvbuf;
}
chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
}
static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
const int xoff, const int yoff, int mv_off,
const int width, const int height, int dir)
{
rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
r->rdsp.put_pixels_tab,
r->rdsp.put_chroma_pixels_tab);
}
static void rv4_weight(RV34DecContext *r)
{
r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
r->tmp_b_block_y[0],
r->tmp_b_block_y[1],
r->weight1,
r->weight2,
r->s.linesize);
r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
r->tmp_b_block_uv[0],
r->tmp_b_block_uv[2],
r->weight1,
r->weight2,
r->s.uvlinesize);
r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
r->tmp_b_block_uv[1],
r->tmp_b_block_uv[3],
r->weight1,
r->weight2,
r->s.uvlinesize);
}
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
{
int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
r->rdsp.put_pixels_tab,
r->rdsp.put_chroma_pixels_tab);
if(!weighted){
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
r->rdsp.avg_pixels_tab,
r->rdsp.avg_chroma_pixels_tab);
}else{
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
r->rdsp.put_pixels_tab,
r->rdsp.put_chroma_pixels_tab);
rv4_weight(r);
}
}
static void rv34_mc_2mv_skip(RV34DecContext *r)
{
int i, j;
int weighted = !r->rv30 && r->weight1 != 8192;
for(j = 0; j < 2; j++)
for(i = 0; i < 2; i++){
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
weighted,
r->rdsp.put_pixels_tab,
r->rdsp.put_chroma_pixels_tab);
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
weighted,
weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
}
if(weighted)
rv4_weight(r);
}
/** number of motion vectors in each macroblock type */
static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
/**
* Decode motion vector differences
* and perform motion vector reconstruction and motion compensation.
*/
static int rv34_decode_mv(RV34DecContext *r, int block_type)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int i, j, k, l;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int next_bt;
memset(r->dmv, 0, sizeof(r->dmv));
for(i = 0; i < num_mvs[block_type]; i++){
r->dmv[i][0] = get_interleaved_se_golomb(gb);
r->dmv[i][1] = get_interleaved_se_golomb(gb);
if (r->dmv[i][0] == INVALID_VLC ||
r->dmv[i][1] == INVALID_VLC) {
r->dmv[i][0] = r->dmv[i][1] = 0;
return AVERROR_INVALIDDATA;
}
}
switch(block_type){
case RV34_MB_TYPE_INTRA:
case RV34_MB_TYPE_INTRA16x16:
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
return 0;
case RV34_MB_SKIP:
if(s->pict_type == AV_PICTURE_TYPE_P){
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
break;
}
case RV34_MB_B_DIRECT:
//surprisingly, it uses motion scheme from next reference frame
/* wait for the current mb row to be finished */
if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
}else
for(j = 0; j < 2; j++)
for(i = 0; i < 2; i++)
for(k = 0; k < 2; k++)
for(l = 0; l < 2; l++)
s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
rv34_mc_2mv(r, block_type);
else
rv34_mc_2mv_skip(r);
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
break;
case RV34_MB_P_16x16:
case RV34_MB_P_MIX16x16:
rv34_pred_mv(r, block_type, 0, 0);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
break;
case RV34_MB_B_FORWARD:
case RV34_MB_B_BACKWARD:
r->dmv[1][0] = r->dmv[0][0];
r->dmv[1][1] = r->dmv[0][1];
if(r->rv30)
rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
else
rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
break;
case RV34_MB_P_16x8:
case RV34_MB_P_8x16:
rv34_pred_mv(r, block_type, 0, 0);
rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
if(block_type == RV34_MB_P_16x8){
rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
}
if(block_type == RV34_MB_P_8x16){
rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
}
break;
case RV34_MB_B_BIDIR:
rv34_pred_mv_b (r, block_type, 0);
rv34_pred_mv_b (r, block_type, 1);
rv34_mc_2mv (r, block_type);
break;
case RV34_MB_P_8x8:
for(i=0;i< 4;i++){
rv34_pred_mv(r, block_type, i, i);
rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
}
break;
}
return 0;
}
/** @} */ // mv group
/**
* @name Macroblock reconstruction functions
* @{
*/
/** mapping of RV30/40 intra prediction types to standard H.264 types */
static const int ittrans[9] = {
DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
};
/** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
static const int ittrans16[4] = {
DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
};
/**
* Perform 4x4 intra prediction.
*/
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
{
uint8_t *prev = dst - stride + 4;
uint32_t topleft;
if(!up && !left)
itype = DC_128_PRED;
else if(!up){
if(itype == VERT_PRED) itype = HOR_PRED;
if(itype == DC_PRED) itype = LEFT_DC_PRED;
}else if(!left){
if(itype == HOR_PRED) itype = VERT_PRED;
if(itype == DC_PRED) itype = TOP_DC_PRED;
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
}
if(!down){
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
}
if(!right && up){
topleft = dst[-stride + 3] * 0x01010101u;
prev = (uint8_t*)&topleft;
}
r->h.pred4x4[itype](dst, prev, stride);
}
static inline int adjust_pred16(int itype, int up, int left)
{
if(!up && !left)
itype = DC_128_PRED8x8;
else if(!up){
if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
}else if(!left){
if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
}
return itype;
}
static inline void rv34_process_block(RV34DecContext *r,
uint8_t *pdst, int stride,
int fc, int sc, int q_dc, int q_ac)
{
MpegEncContext *s = &r->s;
int16_t *ptr = s->block[0];
int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
fc, sc, q_dc, q_ac, q_ac);
if(has_ac){
r->rdsp.rv34_idct_add(pdst, stride, ptr);
}else{
r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
ptr[0] = 0;
}
}
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
{
LOCAL_ALIGNED_16(int16_t, block16, [16]);
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
q_ac = rv34_qscale_tab[s->qscale];
uint8_t *dst = s->dest[0];
int16_t *ptr = s->block[0];
int i, j, itype, has_ac;
memset(block16, 0, 16 * sizeof(*block16));
has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
if(has_ac)
r->rdsp.rv34_inv_transform(block16);
else
r->rdsp.rv34_inv_transform_dc(block16);
itype = ittrans16[intra_types[0]];
itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
r->h.pred16x16[itype](dst, s->linesize);
for(j = 0; j < 4; j++){
for(i = 0; i < 4; i++, cbp >>= 1){
int dc = block16[i + j*4];
if(cbp & 1){
has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
}else
has_ac = 0;
if(has_ac){
ptr[0] = dc;
r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
}else
r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
}
dst += 4*s->linesize;
}
itype = ittrans16[intra_types[0]];
if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
for(j = 1; j < 3; j++){
dst = s->dest[j];
r->h.pred8x8[itype](dst, s->uvlinesize);
for(i = 0; i < 4; i++, cbp >>= 1){
uint8_t *pdst;
if(!(cbp & 1)) continue;
pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
rv34_process_block(r, pdst, s->uvlinesize,
r->chroma_vlc, 1, q_dc, q_ac);
}
}
}
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
{
MpegEncContext *s = &r->s;
uint8_t *dst = s->dest[0];
int avail[6*8] = {0};
int i, j, k;
int idx, q_ac, q_dc;
// Set neighbour information.
if(r->avail_cache[1])
avail[0] = 1;
if(r->avail_cache[2])
avail[1] = avail[2] = 1;
if(r->avail_cache[3])
avail[3] = avail[4] = 1;
if(r->avail_cache[4])
avail[5] = 1;
if(r->avail_cache[5])
avail[8] = avail[16] = 1;
if(r->avail_cache[9])
avail[24] = avail[32] = 1;
q_ac = rv34_qscale_tab[s->qscale];
for(j = 0; j < 4; j++){
idx = 9 + j*8;
for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
avail[idx] = 1;
if(!(cbp & 1)) continue;
rv34_process_block(r, dst, s->linesize,
r->luma_vlc, 0, q_ac, q_ac);
}
dst += s->linesize * 4 - 4*4;
intra_types += r->intra_types_stride;
}
intra_types -= r->intra_types_stride * 4;
q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
for(k = 0; k < 2; k++){
dst = s->dest[1+k];
fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
for(j = 0; j < 2; j++){
int* acache = r->avail_cache + 6 + j*4;
for(i = 0; i < 2; i++, cbp >>= 1, acache++){
int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
acache[0] = 1;
if(!(cbp&1)) continue;
rv34_process_block(r, dst + 4*i, s->uvlinesize,
r->chroma_vlc, 1, q_dc, q_ac);
}
dst += 4*s->uvlinesize;
}
}
}
static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
{
int d;
d = motion_val[0][0] - motion_val[-step][0];
if(d < -3 || d > 3)
return 1;
d = motion_val[0][1] - motion_val[-step][1];
if(d < -3 || d > 3)
return 1;
return 0;
}
static int rv34_set_deblock_coef(RV34DecContext *r)
{
MpegEncContext *s = &r->s;
int hmvmask = 0, vmvmask = 0, i, j;
int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
for(j = 0; j < 16; j += 8){
for(i = 0; i < 2; i++){
if(is_mv_diff_gt_3(motion_val + i, 1))
vmvmask |= 0x11 << (j + i*2);
if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
hmvmask |= 0x03 << (j + i*2);
}
motion_val += s->b8_stride;
}
if(s->first_slice_line)
hmvmask &= ~0x000F;
if(!s->mb_x)
vmvmask &= ~0x1111;
if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
vmvmask |= (vmvmask & 0x4444) >> 1;
hmvmask |= (hmvmask & 0x0F00) >> 4;
if(s->mb_x)
r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
if(!s->first_slice_line)
r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
}
return hmvmask | vmvmask;
}
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
uint8_t *dst = s->dest[0];
int16_t *ptr = s->block[0];
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp, cbp2;
int q_dc, q_ac, has_ac;
int i, j;
int dist;
// Calculate which neighbours are available. Maybe it's worth optimizing too.
memset(r->avail_cache, 0, sizeof(r->avail_cache));
fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
if(s->mb_x && dist)
r->avail_cache[5] =
r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
if(dist >= s->mb_width)
r->avail_cache[2] =
r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
if(s->mb_x && dist > s->mb_width)
r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
s->qscale = r->si.quant;
cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
r->cbp_luma [mb_pos] = cbp;
r->cbp_chroma[mb_pos] = cbp >> 16;
r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
if(cbp == -1)
return -1;
if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
else rv34_output_intra(r, intra_types, cbp);
return 0;
}
if(r->is16){
// Only for RV34_MB_P_MIX16x16
LOCAL_ALIGNED_16(int16_t, block16, [16]);
memset(block16, 0, 16 * sizeof(*block16));
q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
q_ac = rv34_qscale_tab[s->qscale];
if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
r->rdsp.rv34_inv_transform(block16);
else
r->rdsp.rv34_inv_transform_dc(block16);
q_ac = rv34_qscale_tab[s->qscale];
for(j = 0; j < 4; j++){
for(i = 0; i < 4; i++, cbp >>= 1){
int dc = block16[i + j*4];
if(cbp & 1){
has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
}else
has_ac = 0;
if(has_ac){
ptr[0] = dc;
r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
}else
r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
}
dst += 4*s->linesize;
}
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
}else{
q_ac = rv34_qscale_tab[s->qscale];
for(j = 0; j < 4; j++){
for(i = 0; i < 4; i++, cbp >>= 1){
if(!(cbp & 1)) continue;
rv34_process_block(r, dst + 4*i, s->linesize,
r->luma_vlc, 0, q_ac, q_ac);
}
dst += 4*s->linesize;
}
}
q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
for(j = 1; j < 3; j++){
dst = s->dest[j];
for(i = 0; i < 4; i++, cbp >>= 1){
uint8_t *pdst;
if(!(cbp & 1)) continue;
pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
rv34_process_block(r, pdst, s->uvlinesize,
r->chroma_vlc, 1, q_dc, q_ac);
}
}
return 0;
}
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
int cbp, dist;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
// Calculate which neighbours are available. Maybe it's worth optimizing too.
memset(r->avail_cache, 0, sizeof(r->avail_cache));
fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
if(s->mb_x && dist)
r->avail_cache[5] =
r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
if(dist >= s->mb_width)
r->avail_cache[2] =
r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
if(s->mb_x && dist > s->mb_width)
r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
s->qscale = r->si.quant;
cbp = rv34_decode_intra_mb_header(r, intra_types);
r->cbp_luma [mb_pos] = cbp;
r->cbp_chroma[mb_pos] = cbp >> 16;
r->deblock_coefs[mb_pos] = 0xFFFF;
s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
if(cbp == -1)
return -1;
if(r->is16){
rv34_output_i16x16(r, intra_types, cbp);
return 0;
}
rv34_output_intra(r, intra_types, cbp);
return 0;
}
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
{
int bits;
if(s->mb_y >= s->mb_height)
return 1;
if(!s->mb_num_left)
return 1;
if(r->s.mb_skip_run > 1)
return 0;
bits = get_bits_left(&s->gb);
if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits)))
return 1;
return 0;
}
static void rv34_decoder_free(RV34DecContext *r)
{
av_freep(&r->intra_types_hist);
r->intra_types = NULL;
av_freep(&r->tmp_b_block_base);
av_freep(&r->mb_type);
av_freep(&r->cbp_luma);
av_freep(&r->cbp_chroma);
av_freep(&r->deblock_coefs);
}
static int rv34_decoder_alloc(RV34DecContext *r)
{
r->intra_types_stride = r->s.mb_width * 4 + 4;
r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height *
sizeof(*r->cbp_chroma));
r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height *
sizeof(*r->cbp_luma));
r->deblock_coefs = av_mallocz(r->s.mb_stride * r->s.mb_height *
sizeof(*r->deblock_coefs));
r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
sizeof(*r->intra_types_hist));
r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
sizeof(*r->mb_type));
if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
r->intra_types_hist && r->mb_type)) {
rv34_decoder_free(r);
return AVERROR(ENOMEM);
}
r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
return 0;
}
static int rv34_decoder_realloc(RV34DecContext *r)
{
rv34_decoder_free(r);
return rv34_decoder_alloc(r);
}
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int mb_pos, slice_type;
int res;
init_get_bits(&r->s.gb, buf, buf_size*8);
res = r->parse_slice_header(r, gb, &r->si);
if(res < 0){
av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
return -1;
}
slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
if (slice_type != s->pict_type) {
av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
return AVERROR_INVALIDDATA;
}
if (s->width != r->si.width || s->height != r->si.height) {
av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
return AVERROR_INVALIDDATA;
}
r->si.end = end;
s->qscale = r->si.quant;
s->mb_num_left = r->si.end - r->si.start;
r->s.mb_skip_run = 0;
mb_pos = s->mb_x + s->mb_y * s->mb_width;
if(r->si.start != mb_pos){
av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
s->mb_x = r->si.start % s->mb_width;
s->mb_y = r->si.start / s->mb_width;
}
memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
s->first_slice_line = 1;
s->resync_mb_x = s->mb_x;
s->resync_mb_y = s->mb_y;
ff_init_block_index(s);
while(!check_slice_end(r, s)) {
ff_update_block_index(s);
if(r->si.type)
res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
else
res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
if(res < 0){
ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
return -1;
}
if (++s->mb_x == s->mb_width) {
s->mb_x = 0;
s->mb_y++;
ff_init_block_index(s);
memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
if(r->loop_filter && s->mb_y >= 2)
r->loop_filter(r, s->mb_y - 2);
if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
ff_thread_report_progress(&s->current_picture_ptr->tf,
s->mb_y - 2, 0);
}
if(s->mb_x == s->resync_mb_x)
s->first_slice_line=0;
s->mb_num_left--;
}
ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
return s->mb_y == s->mb_height;
}
/** @} */ // reconstruction group end
/**
* Initialize decoder.
*/
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
{
RV34DecContext *r = avctx->priv_data;
MpegEncContext *s = &r->s;
int ret;
ff_mpv_decode_defaults(s);
ff_mpv_decode_init(s, avctx);
s->out_format = FMT_H263;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->has_b_frames = 1;
s->low_delay = 0;
ff_mpv_idct_init(s);
if ((ret = ff_mpv_common_init(s)) < 0)
return ret;
ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
#if CONFIG_RV30_DECODER
if (avctx->codec_id == AV_CODEC_ID_RV30)
ff_rv30dsp_init(&r->rdsp);
#endif
#if CONFIG_RV40_DECODER
if (avctx->codec_id == AV_CODEC_ID_RV40)
ff_rv40dsp_init(&r->rdsp);
#endif
if ((ret = rv34_decoder_alloc(r)) < 0) {
ff_mpv_common_end(&r->s);
return ret;
}
if(!intra_vlcs[0].cbppattern[0].bits)
rv34_init_tables();
return 0;
}
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
MpegEncContext * const s = &r->s, * const s1 = &r1->s;
int err;
if (dst == src || !s1->context_initialized)
return 0;
if (s->height != s1->height || s->width != s1->width) {
s->height = s1->height;
s->width = s1->width;
if ((err = ff_mpv_common_frame_size_change(s)) < 0)
return err;
if ((err = rv34_decoder_realloc(r)) < 0)
return err;
}
r->cur_pts = r1->cur_pts;
r->last_pts = r1->last_pts;
r->next_pts = r1->next_pts;
memset(&r->si, 0, sizeof(r->si));
// Do no call ff_mpeg_update_thread_context on a partially initialized
// decoder context.
if (!s1->context_initialized)
return 0;
return ff_mpeg_update_thread_context(dst, src);
}
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
{
if (n < slice_count) {
if(avctx->slice_count) return avctx->slice_offset[n];
else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
} else
return buf_size;
}
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
{
RV34DecContext *r = avctx->priv_data;
MpegEncContext *s = &r->s;
int got_picture = 0, ret;
ff_er_frame_end(&s->er);
ff_mpv_frame_end(s);
s->mb_num_left = 0;
if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
return ret;
ff_print_debug_info(s, s->current_picture_ptr, pict);
ff_mpv_export_qp_table(s, pict, s->current_picture_ptr, FF_QSCALE_TYPE_MPEG1);
got_picture = 1;
} else if (s->last_picture_ptr) {
if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
return ret;
ff_print_debug_info(s, s->last_picture_ptr, pict);
ff_mpv_export_qp_table(s, pict, s->last_picture_ptr, FF_QSCALE_TYPE_MPEG1);
got_picture = 1;
}
return got_picture;
}
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
{
// attempt to keep aspect during typical resolution switches
if (!sar.num)
sar = (AVRational){1, 1};
sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h}));
return sar;
}
int ff_rv34_decode_frame(AVCodecContext *avctx,
void *data, int *got_picture_ptr,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
RV34DecContext *r = avctx->priv_data;
MpegEncContext *s = &r->s;
AVFrame *pict = data;
SliceInfo si;
int i, ret;
int slice_count;
const uint8_t *slices_hdr = NULL;
int last = 0;
int faulty_b = 0;
int offset;
/* no supplementary picture */
if (buf_size == 0) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
return ret;
s->next_picture_ptr = NULL;
*got_picture_ptr = 1;
}
return 0;
}
if(!avctx->slice_count){
slice_count = (*buf++) + 1;
slices_hdr = buf + 4;
buf += 8 * slice_count;
buf_size -= 1 + 8 * slice_count;
}else
slice_count = avctx->slice_count;
offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size);
//parse first slice header to check whether this frame can be decoded
if(offset < 0 || offset > buf_size){
av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
return AVERROR_INVALIDDATA;
}
init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8);
if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
return AVERROR_INVALIDDATA;
}
if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
si.type == AV_PICTURE_TYPE_B) {
av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
"reference data.\n");
faulty_b = 1;
}
if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
|| avctx->skip_frame >= AVDISCARD_ALL)
return avpkt->size;
/* first slice */
if (si.start == 0) {
if (s->mb_num_left > 0 && s->current_picture_ptr) {
av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n",
s->mb_num_left);
ff_er_frame_end(&s->er);
ff_mpv_frame_end(s);
}
if (s->width != si.width || s->height != si.height) {
int err;
av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
si.width, si.height);
if (av_image_check_size(si.width, si.height, 0, s->avctx))
return AVERROR_INVALIDDATA;
s->avctx->sample_aspect_ratio = update_sar(
s->width, s->height, s->avctx->sample_aspect_ratio,
si.width, si.height);
s->width = si.width;
s->height = si.height;
err = ff_set_dimensions(s->avctx, s->width, s->height);
if (err < 0)
return err;
if ((err = ff_mpv_common_frame_size_change(s)) < 0)
return err;
if ((err = rv34_decoder_realloc(r)) < 0)
return err;
}
if (faulty_b)
return AVERROR_INVALIDDATA;
s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
if (ff_mpv_frame_start(s, s->avctx) < 0)
return -1;
ff_mpeg_er_frame_start(s);
if (!r->tmp_b_block_base) {
int i;
r->tmp_b_block_base = av_malloc(s->linesize * 48);
for (i = 0; i < 2; i++)
r->tmp_b_block_y[i] = r->tmp_b_block_base
+ i * 16 * s->linesize;
for (i = 0; i < 4; i++)
r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
+ (i >> 1) * 8 * s->uvlinesize
+ (i & 1) * 16;
}
r->cur_pts = si.pts;
if (s->pict_type != AV_PICTURE_TYPE_B) {
r->last_pts = r->next_pts;
r->next_pts = r->cur_pts;
} else {
int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
if(!refdist){
r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
r->scaled_weight = 0;
}else{
if (FFMAX(dist0, dist1) > refdist)
av_log(avctx, AV_LOG_TRACE, "distance overflow\n");
r->mv_weight1 = (dist0 << 14) / refdist;
r->mv_weight2 = (dist1 << 14) / refdist;
if((r->mv_weight1|r->mv_weight2) & 511){
r->weight1 = r->mv_weight1;
r->weight2 = r->mv_weight2;
r->scaled_weight = 0;
}else{
r->weight1 = r->mv_weight1 >> 9;
r->weight2 = r->mv_weight2 >> 9;
r->scaled_weight = 1;
}
}
}
s->mb_x = s->mb_y = 0;
ff_thread_finish_setup(s->avctx);
} else if (HAVE_THREADS &&
(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
"multithreading mode (start MB is %d).\n", si.start);
return AVERROR_INVALIDDATA;
}
for(i = 0; i < slice_count; i++){
int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size);
int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size);
int size;
if(offset < 0 || offset > offset1 || offset1 > buf_size){
av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
break;
}
size = offset1 - offset;
r->si.end = s->mb_width * s->mb_height;
s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
if(i+1 < slice_count){
int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size);
if (offset2 < offset1 || offset2 > buf_size) {
av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
break;
}
init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8);
if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
size = offset2 - offset;
}else
r->si.end = si.start;
}
av_assert0 (size >= 0 && size <= buf_size - offset);
last = rv34_decode_slice(r, r->si.end, buf + offset, size);
if(last)
break;
}
if (s->current_picture_ptr) {
if (last) {
if(r->loop_filter)
r->loop_filter(r, s->mb_height - 1);
ret = finish_frame(avctx, pict);
if (ret < 0)
return ret;
*got_picture_ptr = ret;
} else if (HAVE_THREADS &&
(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
/* always mark the current frame as finished, frame-mt supports
* only complete frames */
ff_er_frame_end(&s->er);
ff_mpv_frame_end(s);
s->mb_num_left = 0;
ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
return AVERROR_INVALIDDATA;
}
}
return avpkt->size;
}
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
{
RV34DecContext *r = avctx->priv_data;
ff_mpv_common_end(&r->s);
rv34_decoder_free(r);
return 0;
}