/* * Copyright (c) 2010 Stefano Sabatini * Copyright (c) 2010 Baptiste Coudurier * Copyright (c) 2007 Bobby Bingham * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * overlay one video on top of another */ #include "avfilter.h" #include "formats.h" #include "libavutil/common.h" #include "libavutil/eval.h" #include "libavutil/avstring.h" #include "libavutil/pixdesc.h" #include "libavutil/imgutils.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/timestamp.h" #include "internal.h" #include "drawutils.h" #include "framesync.h" #include "video.h" #include "vf_overlay.h" typedef struct ThreadData { AVFrame *dst, *src; } ThreadData; static const char *const var_names[] = { "main_w", "W", ///< width of the main video "main_h", "H", ///< height of the main video "overlay_w", "w", ///< width of the overlay video "overlay_h", "h", ///< height of the overlay video "hsub", "vsub", "x", "y", "n", ///< number of frame "pos", ///< position in the file "t", ///< timestamp expressed in seconds NULL }; #define MAIN 0 #define OVERLAY 1 #define R 0 #define G 1 #define B 2 #define A 3 #define Y 0 #define U 1 #define V 2 enum EvalMode { EVAL_MODE_INIT, EVAL_MODE_FRAME, EVAL_MODE_NB }; static av_cold void uninit(AVFilterContext *ctx) { OverlayContext *s = ctx->priv; ff_framesync_uninit(&s->fs); av_expr_free(s->x_pexpr); s->x_pexpr = NULL; av_expr_free(s->y_pexpr); s->y_pexpr = NULL; } static inline int normalize_xy(double d, int chroma_sub) { if (isnan(d)) return INT_MAX; return (int)d & ~((1 << chroma_sub) - 1); } static void eval_expr(AVFilterContext *ctx) { OverlayContext *s = ctx->priv; s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL); s->var_values[VAR_Y] = av_expr_eval(s->y_pexpr, s->var_values, NULL); /* It is necessary if x is expressed from y */ s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL); s->x = normalize_xy(s->var_values[VAR_X], s->hsub); s->y = normalize_xy(s->var_values[VAR_Y], s->vsub); } static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx) { int ret; AVExpr *old = NULL; if (*pexpr) old = *pexpr; ret = av_expr_parse(pexpr, expr, var_names, NULL, NULL, NULL, NULL, 0, log_ctx); if (ret < 0) { av_log(log_ctx, AV_LOG_ERROR, "Error when evaluating the expression '%s' for %s\n", expr, option); *pexpr = old; return ret; } av_expr_free(old); return 0; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { OverlayContext *s = ctx->priv; int ret; if (!strcmp(cmd, "x")) ret = set_expr(&s->x_pexpr, args, cmd, ctx); else if (!strcmp(cmd, "y")) ret = set_expr(&s->y_pexpr, args, cmd, ctx); else ret = AVERROR(ENOSYS); if (ret < 0) return ret; if (s->eval_mode == EVAL_MODE_INIT) { eval_expr(ctx); av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n", s->var_values[VAR_X], s->x, s->var_values[VAR_Y], s->y); } return ret; } static const enum AVPixelFormat alpha_pix_fmts[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE }; static int query_formats(AVFilterContext *ctx) { OverlayContext *s = ctx->priv; /* overlay formats contains alpha, for avoiding conversion with alpha information loss */ static const enum AVPixelFormat main_pix_fmts_yuv420[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_NV12, AV_PIX_FMT_NV21, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv420[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_yuv422[] = { AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv422[] = { AV_PIX_FMT_YUVA422P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_yuv444[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv444[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_gbrp[] = { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_gbrp[] = { AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE }; const enum AVPixelFormat *main_formats, *overlay_formats; AVFilterFormats *formats; int ret; switch (s->format) { case OVERLAY_FORMAT_YUV420: main_formats = main_pix_fmts_yuv420; overlay_formats = overlay_pix_fmts_yuv420; break; case OVERLAY_FORMAT_YUV422: main_formats = main_pix_fmts_yuv422; overlay_formats = overlay_pix_fmts_yuv422; break; case OVERLAY_FORMAT_YUV444: main_formats = main_pix_fmts_yuv444; overlay_formats = overlay_pix_fmts_yuv444; break; case OVERLAY_FORMAT_RGB: main_formats = main_pix_fmts_rgb; overlay_formats = overlay_pix_fmts_rgb; break; case OVERLAY_FORMAT_GBRP: main_formats = main_pix_fmts_gbrp; overlay_formats = overlay_pix_fmts_gbrp; break; case OVERLAY_FORMAT_AUTO: return ff_set_common_formats(ctx, ff_make_format_list(alpha_pix_fmts)); default: av_assert0(0); } formats = ff_make_format_list(main_formats); if ((ret = ff_formats_ref(formats, &ctx->inputs[MAIN]->out_formats)) < 0 || (ret = ff_formats_ref(formats, &ctx->outputs[MAIN]->in_formats)) < 0) return ret; return ff_formats_ref(ff_make_format_list(overlay_formats), &ctx->inputs[OVERLAY]->out_formats); } static int config_input_overlay(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; OverlayContext *s = inlink->dst->priv; int ret; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(s->overlay_pix_step, NULL, pix_desc); /* Finish the configuration by evaluating the expressions now when both inputs are configured. */ s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = ctx->inputs[MAIN ]->w; s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = ctx->inputs[MAIN ]->h; s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = ctx->inputs[OVERLAY]->w; s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = ctx->inputs[OVERLAY]->h; s->var_values[VAR_HSUB] = 1<log2_chroma_w; s->var_values[VAR_VSUB] = 1<log2_chroma_h; s->var_values[VAR_X] = NAN; s->var_values[VAR_Y] = NAN; s->var_values[VAR_N] = 0; s->var_values[VAR_T] = NAN; s->var_values[VAR_POS] = NAN; if ((ret = set_expr(&s->x_pexpr, s->x_expr, "x", ctx)) < 0 || (ret = set_expr(&s->y_pexpr, s->y_expr, "y", ctx)) < 0) return ret; s->overlay_is_packed_rgb = ff_fill_rgba_map(s->overlay_rgba_map, inlink->format) >= 0; s->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); if (s->eval_mode == EVAL_MODE_INIT) { eval_expr(ctx); av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n", s->var_values[VAR_X], s->x, s->var_values[VAR_Y], s->y); } av_log(ctx, AV_LOG_VERBOSE, "main w:%d h:%d fmt:%s overlay w:%d h:%d fmt:%s\n", ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h, av_get_pix_fmt_name(ctx->inputs[MAIN]->format), ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h, av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format)); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; OverlayContext *s = ctx->priv; int ret; if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0) return ret; outlink->w = ctx->inputs[MAIN]->w; outlink->h = ctx->inputs[MAIN]->h; outlink->time_base = ctx->inputs[MAIN]->time_base; return ff_framesync_configure(&s->fs); } // divide by 255 and round to nearest // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16) // calculate the unpremultiplied alpha, applying the general equation: // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) ) // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y) #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x))) /** * Blend image in src to destination buffer dst at position (x, y). */ static av_always_inline void blend_slice_packed_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; int i, imax, j, jmax; const int src_w = src->width; const int src_h = src->height; const int dst_w = dst->width; const int dst_h = dst->height; uint8_t alpha; ///< the amount of overlay to blend on to main const int dr = s->main_rgba_map[R]; const int dg = s->main_rgba_map[G]; const int db = s->main_rgba_map[B]; const int da = s->main_rgba_map[A]; const int dstep = s->main_pix_step[0]; const int sr = s->overlay_rgba_map[R]; const int sg = s->overlay_rgba_map[G]; const int sb = s->overlay_rgba_map[B]; const int sa = s->overlay_rgba_map[A]; const int sstep = s->overlay_pix_step[0]; int slice_start, slice_end; uint8_t *S, *sp, *d, *dp; i = FFMAX(-y, 0); imax = FFMIN3(-y + dst_h, FFMIN(src_h, dst_h), y + src_h); slice_start = i + (imax * jobnr) / nb_jobs; slice_end = i + (imax * (jobnr+1)) / nb_jobs; sp = src->data[0] + (slice_start) * src->linesize[0]; dp = dst->data[0] + (y + slice_start) * dst->linesize[0]; for (i = slice_start; i < slice_end; i++) { j = FFMAX(-x, 0); S = sp + j * sstep; d = dp + (x+j) * dstep; for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { alpha = S[sa]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { uint8_t alpha_d = d[da]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: d[dr] = S[sr]; d[dg] = S[sg]; d[db] = S[sb]; break; default: // main_value = main_value * (1 - alpha) + overlay_value * alpha // since alpha is in the range 0-255, the result must divided by 255 d[dr] = is_straight ? FAST_DIV255(d[dr] * (255 - alpha) + S[sr] * alpha) : FFMIN(FAST_DIV255(d[dr] * (255 - alpha)) + S[sr], 255); d[dg] = is_straight ? FAST_DIV255(d[dg] * (255 - alpha) + S[sg] * alpha) : FFMIN(FAST_DIV255(d[dg] * (255 - alpha)) + S[sg], 255); d[db] = is_straight ? FAST_DIV255(d[db] * (255 - alpha) + S[sb] * alpha) : FFMIN(FAST_DIV255(d[db] * (255 - alpha)) + S[sb], 255); } if (main_has_alpha) { switch (alpha) { case 0: break; case 255: d[da] = S[sa]; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha d[da] += FAST_DIV255((255 - d[da]) * S[sa]); } } d += dstep; S += sstep; } dp += dst->linesize[0]; sp += src->linesize[0]; } } static av_always_inline void blend_plane(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int src_w, int src_h, int dst_w, int dst_h, int i, int hsub, int vsub, int x, int y, int main_has_alpha, int dst_plane, int dst_offset, int dst_step, int straight, int yuv, int jobnr, int nb_jobs) { OverlayContext *octx = ctx->priv; int src_wp = AV_CEIL_RSHIFT(src_w, hsub); int src_hp = AV_CEIL_RSHIFT(src_h, vsub); int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub); int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub); int yp = y>>vsub; int xp = x>>hsub; uint8_t *s, *sp, *d, *dp, *dap, *a, *da, *ap; int jmax, j, k, kmax; int slice_start, slice_end; j = FFMAX(-yp, 0); jmax = FFMIN3(-yp + dst_hp, FFMIN(src_hp, dst_hp), yp + src_hp); slice_start = j + (jmax * jobnr) / nb_jobs; slice_end = j + (jmax * (jobnr+1)) / nb_jobs; sp = src->data[i] + (slice_start) * src->linesize[i]; dp = dst->data[dst_plane] + (yp + slice_start) * dst->linesize[dst_plane] + dst_offset; ap = src->data[3] + (slice_start << vsub) * src->linesize[3]; dap = dst->data[3] + ((yp + slice_start) << vsub) * dst->linesize[3]; for (j = slice_start; j < slice_end; j++) { k = FFMAX(-xp, 0); d = dp + (xp+k) * dst_step; s = sp + k; a = ap + (k<blend_row[i]) { int c = octx->blend_row[i](d, da, s, a, kmax - k, src->linesize[3]); s += c; d += dst_step * c; da += (1 << hsub) * c; a += (1 << hsub) * c; k += c; } for (; k < kmax; k++) { int alpha_v, alpha_h, alpha; // average alpha for color components, improve quality if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { alpha = (a[0] + a[src->linesize[3]] + a[1] + a[src->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < src_wp ? (a[0] + a[1]) >> 1 : a[0]; alpha_v = vsub && j+1 < src_hp ? (a[0] + a[src->linesize[3]]) >> 1 : a[0]; alpha = (alpha_v + alpha_h) >> 1; } else alpha = a[0]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { // average alpha for color components, improve quality uint8_t alpha_d; if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { alpha_d = (da[0] + da[dst->linesize[3]] + da[1] + da[dst->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < src_wp ? (da[0] + da[1]) >> 1 : da[0]; alpha_v = vsub && j+1 < src_hp ? (da[0] + da[dst->linesize[3]]) >> 1 : da[0]; alpha_d = (alpha_v + alpha_h) >> 1; } else alpha_d = da[0]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } if (straight) { *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha); } else { if (i && yuv) *d = av_clip(FAST_DIV255((*d - 128) * (255 - alpha)) + *s - 128, -128, 128) + 128; else *d = FFMIN(FAST_DIV255(*d * (255 - alpha)) + *s, 255); } s++; d += dst_step; da += 1 << hsub; a += 1 << hsub; } dp += dst->linesize[dst_plane]; sp += src->linesize[i]; ap += (1 << vsub) * src->linesize[3]; dap += (1 << vsub) * dst->linesize[3]; } } static inline void alpha_composite(const AVFrame *src, const AVFrame *dst, int src_w, int src_h, int dst_w, int dst_h, int x, int y, int jobnr, int nb_jobs) { uint8_t alpha; ///< the amount of overlay to blend on to main uint8_t *s, *sa, *d, *da; int i, imax, j, jmax; int slice_start, slice_end; imax = FFMIN(-y + dst_h, src_h); slice_start = (imax * jobnr) / nb_jobs; slice_end = ((imax * (jobnr+1)) / nb_jobs); i = FFMAX(-y, 0); sa = src->data[3] + (i + slice_start) * src->linesize[3]; da = dst->data[3] + (y + i + slice_start) * dst->linesize[3]; for (i = i + slice_start; i < slice_end; i++) { j = FFMAX(-x, 0); s = sa + j; d = da + x+j; for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { alpha = *s; if (alpha != 0 && alpha != 255) { uint8_t alpha_d = *d; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: *d = *s; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha *d += FAST_DIV255((255 - *d) * *s); } d += 1; s += 1; } da += dst->linesize[3]; sa += src->linesize[3]; } } static av_always_inline void blend_slice_yuv(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int hsub, int vsub, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; const int src_w = src->width; const int src_h = src->height; const int dst_w = dst->width; const int dst_h = dst->height; blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha, s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 1, jobnr, nb_jobs); blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha, s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 1, jobnr, nb_jobs); blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha, s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 1, jobnr, nb_jobs); if (main_has_alpha) alpha_composite(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs); } static av_always_inline void blend_slice_planar_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int hsub, int vsub, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; const int src_w = src->width; const int src_h = src->height; const int dst_w = dst->width; const int dst_h = dst->height; blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha, s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 0, jobnr, nb_jobs); blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha, s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 0, jobnr, nb_jobs); blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha, s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 0, jobnr, nb_jobs); if (main_has_alpha) alpha_composite(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs); } static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 1, jobnr, nb_jobs); return 0; } static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { OverlayContext *s = ctx->priv; ThreadData *td = arg; blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 0, jobnr, nb_jobs); return 0; } static int config_input_main(AVFilterLink *inlink) { OverlayContext *s = inlink->dst->priv; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc); s->hsub = pix_desc->log2_chroma_w; s->vsub = pix_desc->log2_chroma_h; s->main_desc = pix_desc; s->main_is_packed_rgb = ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0; s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); switch (s->format) { case OVERLAY_FORMAT_YUV420: s->blend_slice = s->main_has_alpha ? blend_slice_yuva420 : blend_slice_yuv420; break; case OVERLAY_FORMAT_YUV422: s->blend_slice = s->main_has_alpha ? blend_slice_yuva422 : blend_slice_yuv422; break; case OVERLAY_FORMAT_YUV444: s->blend_slice = s->main_has_alpha ? blend_slice_yuva444 : blend_slice_yuv444; break; case OVERLAY_FORMAT_RGB: s->blend_slice = s->main_has_alpha ? blend_slice_rgba : blend_slice_rgb; break; case OVERLAY_FORMAT_GBRP: s->blend_slice = s->main_has_alpha ? blend_slice_gbrap : blend_slice_gbrp; break; case OVERLAY_FORMAT_AUTO: switch (inlink->format) { case AV_PIX_FMT_YUVA420P: s->blend_slice = blend_slice_yuva420; break; case AV_PIX_FMT_YUVA422P: s->blend_slice = blend_slice_yuva422; break; case AV_PIX_FMT_YUVA444P: s->blend_slice = blend_slice_yuva444; break; case AV_PIX_FMT_ARGB: case AV_PIX_FMT_RGBA: case AV_PIX_FMT_BGRA: case AV_PIX_FMT_ABGR: s->blend_slice = blend_slice_rgba; break; case AV_PIX_FMT_GBRAP: s->blend_slice = blend_slice_gbrap; break; default: av_assert0(0); break; } break; } if (!s->alpha_format) goto end; switch (s->format) { case OVERLAY_FORMAT_YUV420: s->blend_slice = s->main_has_alpha ? blend_slice_yuva420_pm : blend_slice_yuv420_pm; break; case OVERLAY_FORMAT_YUV422: s->blend_slice = s->main_has_alpha ? blend_slice_yuva422_pm : blend_slice_yuv422_pm; break; case OVERLAY_FORMAT_YUV444: s->blend_slice = s->main_has_alpha ? blend_slice_yuva444_pm : blend_slice_yuv444_pm; break; case OVERLAY_FORMAT_RGB: s->blend_slice = s->main_has_alpha ? blend_slice_rgba_pm : blend_slice_rgb_pm; break; case OVERLAY_FORMAT_GBRP: s->blend_slice = s->main_has_alpha ? blend_slice_gbrap_pm : blend_slice_gbrp_pm; break; case OVERLAY_FORMAT_AUTO: switch (inlink->format) { case AV_PIX_FMT_YUVA420P: s->blend_slice = blend_slice_yuva420_pm; break; case AV_PIX_FMT_YUVA422P: s->blend_slice = blend_slice_yuva422_pm; break; case AV_PIX_FMT_YUVA444P: s->blend_slice = blend_slice_yuva444_pm; break; case AV_PIX_FMT_ARGB: case AV_PIX_FMT_RGBA: case AV_PIX_FMT_BGRA: case AV_PIX_FMT_ABGR: s->blend_slice = blend_slice_rgba_pm; break; case AV_PIX_FMT_GBRAP: s->blend_slice = blend_slice_gbrap_pm; break; default: av_assert0(0); break; } break; } end: if (ARCH_X86) ff_overlay_init_x86(s, s->format, inlink->format, s->alpha_format, s->main_has_alpha); return 0; } static int do_blend(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; AVFrame *mainpic, *second; OverlayContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; int ret; ret = ff_framesync_dualinput_get_writable(fs, &mainpic, &second); if (ret < 0) return ret; if (!second) return ff_filter_frame(ctx->outputs[0], mainpic); if (s->eval_mode == EVAL_MODE_FRAME) { int64_t pos = mainpic->pkt_pos; s->var_values[VAR_N] = inlink->frame_count_out; s->var_values[VAR_T] = mainpic->pts == AV_NOPTS_VALUE ? NAN : mainpic->pts * av_q2d(inlink->time_base); s->var_values[VAR_POS] = pos == -1 ? NAN : pos; s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = second->width; s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = second->height; s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = mainpic->width; s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = mainpic->height; eval_expr(ctx); av_log(ctx, AV_LOG_DEBUG, "n:%f t:%f pos:%f x:%f xi:%d y:%f yi:%d\n", s->var_values[VAR_N], s->var_values[VAR_T], s->var_values[VAR_POS], s->var_values[VAR_X], s->x, s->var_values[VAR_Y], s->y); } if (s->x < mainpic->width && s->x + second->width >= 0 && s->y < mainpic->height && s->y + second->height >= 0) { ThreadData td; td.dst = mainpic; td.src = second; ctx->internal->execute(ctx, s->blend_slice, &td, NULL, FFMIN(FFMAX(1, FFMIN3(s->y + second->height, FFMIN(second->height, mainpic->height), mainpic->height - s->y)), ff_filter_get_nb_threads(ctx))); } return ff_filter_frame(ctx->outputs[0], mainpic); } static av_cold int init(AVFilterContext *ctx) { OverlayContext *s = ctx->priv; s->fs.on_event = do_blend; return 0; } static int activate(AVFilterContext *ctx) { OverlayContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } #define OFFSET(x) offsetof(OverlayContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption overlay_options[] = { { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS }, { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS }, { "eof_action", "Action to take when encountering EOF from secondary input ", OFFSET(fs.opt_eof_action), AV_OPT_TYPE_INT, { .i64 = EOF_ACTION_REPEAT }, EOF_ACTION_REPEAT, EOF_ACTION_PASS, .flags = FLAGS, "eof_action" }, { "repeat", "Repeat the previous frame.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_REPEAT }, .flags = FLAGS, "eof_action" }, { "endall", "End both streams.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_ENDALL }, .flags = FLAGS, "eof_action" }, { "pass", "Pass through the main input.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_PASS }, .flags = FLAGS, "eof_action" }, { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_FRAME}, 0, EVAL_MODE_NB-1, FLAGS, "eval" }, { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" }, { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" }, { "shortest", "force termination when the shortest input terminates", OFFSET(fs.opt_shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=OVERLAY_FORMAT_YUV420}, 0, OVERLAY_FORMAT_NB-1, FLAGS, "format" }, { "yuv420", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420}, .flags = FLAGS, .unit = "format" }, { "yuv422", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422}, .flags = FLAGS, .unit = "format" }, { "yuv444", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV444}, .flags = FLAGS, .unit = "format" }, { "rgb", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_RGB}, .flags = FLAGS, .unit = "format" }, { "gbrp", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_GBRP}, .flags = FLAGS, .unit = "format" }, { "auto", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_AUTO}, .flags = FLAGS, .unit = "format" }, { "repeatlast", "repeat overlay of the last overlay frame", OFFSET(fs.opt_repeatlast), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS }, { "alpha", "alpha format", OFFSET(alpha_format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "alpha_format" }, { "straight", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "alpha_format" }, { "premultiplied", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "alpha_format" }, { NULL } }; FRAMESYNC_DEFINE_CLASS(overlay, OverlayContext, fs); static const AVFilterPad avfilter_vf_overlay_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_main, }, { .name = "overlay", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_overlay, }, { NULL } }; static const AVFilterPad avfilter_vf_overlay_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_overlay = { .name = "overlay", .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."), .preinit = overlay_framesync_preinit, .init = init, .uninit = uninit, .priv_size = sizeof(OverlayContext), .priv_class = &overlay_class, .query_formats = query_formats, .activate = activate, .process_command = process_command, .inputs = avfilter_vf_overlay_inputs, .outputs = avfilter_vf_overlay_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };