FFmpeg4/libavcodec/alsdec.c

2192 lines
78 KiB
C

/*
* MPEG-4 ALS decoder
* Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* MPEG-4 ALS decoder
* @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
*/
#include <inttypes.h>
#include "avcodec.h"
#include "get_bits.h"
#include "unary.h"
#include "mpeg4audio.h"
#include "bgmc.h"
#include "bswapdsp.h"
#include "internal.h"
#include "mlz.h"
#include "libavutil/samplefmt.h"
#include "libavutil/crc.h"
#include "libavutil/softfloat_ieee754.h"
#include "libavutil/intfloat.h"
#include "libavutil/intreadwrite.h"
#include <stdint.h>
/** Rice parameters and corresponding index offsets for decoding the
* indices of scaled PARCOR values. The table chosen is set globally
* by the encoder and stored in ALSSpecificConfig.
*/
static const int8_t parcor_rice_table[3][20][2] = {
{ {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
{ 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
{ -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
{ 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
{ {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
{ 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
{-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
{ 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
{ {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
{ 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
{-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
{ 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
};
/** Scaled PARCOR values used for the first two PARCOR coefficients.
* To be indexed by the Rice coded indices.
* Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
* Actual values are divided by 32 in order to be stored in 16 bits.
*/
static const int16_t parcor_scaled_values[] = {
-1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
-1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
-1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
-1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
-1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
-994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
-971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
-944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
-913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
-878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
-838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
-795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
-747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
-695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
-639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
-580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
-516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
-447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
-375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
-299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
-219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
-134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
-46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
};
/** Gain values of p(0) for long-term prediction.
* To be indexed by the Rice coded indices.
*/
static const uint8_t ltp_gain_values [4][4] = {
{ 0, 8, 16, 24},
{32, 40, 48, 56},
{64, 70, 76, 82},
{88, 92, 96, 100}
};
/** Inter-channel weighting factors for multi-channel correlation.
* To be indexed by the Rice coded indices.
*/
static const int16_t mcc_weightings[] = {
204, 192, 179, 166, 153, 140, 128, 115,
102, 89, 76, 64, 51, 38, 25, 12,
0, -12, -25, -38, -51, -64, -76, -89,
-102, -115, -128, -140, -153, -166, -179, -192
};
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
*/
static const uint8_t tail_code[16][6] = {
{ 74, 44, 25, 13, 7, 3},
{ 68, 42, 24, 13, 7, 3},
{ 58, 39, 23, 13, 7, 3},
{126, 70, 37, 19, 10, 5},
{132, 70, 37, 20, 10, 5},
{124, 70, 38, 20, 10, 5},
{120, 69, 37, 20, 11, 5},
{116, 67, 37, 20, 11, 5},
{108, 66, 36, 20, 10, 5},
{102, 62, 36, 20, 10, 5},
{ 88, 58, 34, 19, 10, 5},
{162, 89, 49, 25, 13, 7},
{156, 87, 49, 26, 14, 7},
{150, 86, 47, 26, 14, 7},
{142, 84, 47, 26, 14, 7},
{131, 79, 46, 26, 14, 7}
};
enum RA_Flag {
RA_FLAG_NONE,
RA_FLAG_FRAMES,
RA_FLAG_HEADER
};
typedef struct ALSSpecificConfig {
uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
int frame_length; ///< frame length for each frame (last frame may differ)
int ra_distance; ///< distance between RA frames (in frames, 0...255)
enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
int adapt_order; ///< adaptive order: 1 = on, 0 = off
int coef_table; ///< table index of Rice code parameters
int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
int max_order; ///< maximum prediction order (0..1023)
int block_switching; ///< number of block switching levels
int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
int sb_part; ///< sub-block partition
int joint_stereo; ///< joint stereo: 1 = on, 0 = off
int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
int chan_config; ///< indicates that a chan_config_info field is present
int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
int *chan_pos; ///< original channel positions
int crc_enabled; ///< enable Cyclic Redundancy Checksum
} ALSSpecificConfig;
typedef struct ALSChannelData {
int stop_flag;
int master_channel;
int time_diff_flag;
int time_diff_sign;
int time_diff_index;
int weighting[6];
} ALSChannelData;
typedef struct ALSDecContext {
AVCodecContext *avctx;
ALSSpecificConfig sconf;
GetBitContext gb;
BswapDSPContext bdsp;
const AVCRC *crc_table;
uint32_t crc_org; ///< CRC value of the original input data
uint32_t crc; ///< CRC value calculated from decoded data
unsigned int cur_frame_length; ///< length of the current frame to decode
unsigned int frame_id; ///< the frame ID / number of the current frame
unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
unsigned int cs_switch; ///< if true, channel rearrangement is done
unsigned int num_blocks; ///< number of blocks used in the current frame
unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
int ltp_lag_length; ///< number of bits used for ltp lag value
int *const_block; ///< contains const_block flags for all channels
unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
unsigned int *opt_order; ///< contains opt_order flags for all channels
int *store_prev_samples; ///< contains store_prev_samples flags for all channels
int *use_ltp; ///< contains use_ltp flags for all channels
int *ltp_lag; ///< contains ltp lag values for all channels
int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
int32_t **quant_cof; ///< quantized parcor coefficients for a channel
int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
ALSChannelData **chan_data; ///< channel data for multi-channel correlation
ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
int *reverted_channels; ///< stores a flag for each reverted channel
int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
int32_t **raw_samples; ///< decoded raw samples for each channel
int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
MLZ* mlz; ///< masked lz decompression structure
SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
int *shift_value; ///< value by which the binary point is to be shifted for all channels
int *last_shift_value; ///< contains last shift value for all channels
int **raw_mantissa; ///< decoded mantissa bits of the difference signal
unsigned char *larray; ///< buffer to store the output of masked lz decompression
int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
int highest_decoded_channel;
} ALSDecContext;
typedef struct ALSBlockData {
unsigned int block_length; ///< number of samples within the block
unsigned int ra_block; ///< if true, this is a random access block
int *const_block; ///< if true, this is a constant value block
int js_blocks; ///< true if this block contains a difference signal
unsigned int *shift_lsbs; ///< shift of values for this block
unsigned int *opt_order; ///< prediction order of this block
int *store_prev_samples;///< if true, carryover samples have to be stored
int *use_ltp; ///< if true, long-term prediction is used
int *ltp_lag; ///< lag value for long-term prediction
int *ltp_gain; ///< gain values for ltp 5-tap filter
int32_t *quant_cof; ///< quantized parcor coefficients
int32_t *lpc_cof; ///< coefficients of the direct form prediction
int32_t *raw_samples; ///< decoded raw samples / residuals for this block
int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
} ALSBlockData;
static av_cold void dprint_specific_config(ALSDecContext *ctx)
{
#ifdef DEBUG
AVCodecContext *avctx = ctx->avctx;
ALSSpecificConfig *sconf = &ctx->sconf;
ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
ff_dlog(avctx, "floating = %i\n", sconf->floating);
ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
#endif
}
/** Read an ALSSpecificConfig from a buffer into the output struct.
*/
static av_cold int read_specific_config(ALSDecContext *ctx)
{
GetBitContext gb;
uint64_t ht_size;
int i, config_offset;
MPEG4AudioConfig m4ac = {0};
ALSSpecificConfig *sconf = &ctx->sconf;
AVCodecContext *avctx = ctx->avctx;
uint32_t als_id, header_size, trailer_size;
int ret;
if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
return ret;
config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
avctx->extradata_size, 1, avctx);
if (config_offset < 0)
return AVERROR_INVALIDDATA;
skip_bits_long(&gb, config_offset);
if (get_bits_left(&gb) < (30 << 3))
return AVERROR_INVALIDDATA;
// read the fixed items
als_id = get_bits_long(&gb, 32);
avctx->sample_rate = m4ac.sample_rate;
skip_bits_long(&gb, 32); // sample rate already known
sconf->samples = get_bits_long(&gb, 32);
avctx->channels = m4ac.channels;
skip_bits(&gb, 16); // number of channels already known
skip_bits(&gb, 3); // skip file_type
sconf->resolution = get_bits(&gb, 3);
sconf->floating = get_bits1(&gb);
sconf->msb_first = get_bits1(&gb);
sconf->frame_length = get_bits(&gb, 16) + 1;
sconf->ra_distance = get_bits(&gb, 8);
sconf->ra_flag = get_bits(&gb, 2);
sconf->adapt_order = get_bits1(&gb);
sconf->coef_table = get_bits(&gb, 2);
sconf->long_term_prediction = get_bits1(&gb);
sconf->max_order = get_bits(&gb, 10);
sconf->block_switching = get_bits(&gb, 2);
sconf->bgmc = get_bits1(&gb);
sconf->sb_part = get_bits1(&gb);
sconf->joint_stereo = get_bits1(&gb);
sconf->mc_coding = get_bits1(&gb);
sconf->chan_config = get_bits1(&gb);
sconf->chan_sort = get_bits1(&gb);
sconf->crc_enabled = get_bits1(&gb);
sconf->rlslms = get_bits1(&gb);
skip_bits(&gb, 5); // skip 5 reserved bits
skip_bits1(&gb); // skip aux_data_enabled
// check for ALSSpecificConfig struct
if (als_id != MKBETAG('A','L','S','\0'))
return AVERROR_INVALIDDATA;
if (avctx->channels > FF_SANE_NB_CHANNELS) {
avpriv_request_sample(avctx, "Huge number of channels\n");
return AVERROR_PATCHWELCOME;
}
ctx->cur_frame_length = sconf->frame_length;
// read channel config
if (sconf->chan_config)
sconf->chan_config_info = get_bits(&gb, 16);
// TODO: use this to set avctx->channel_layout
// read channel sorting
if (sconf->chan_sort && avctx->channels > 1) {
int chan_pos_bits = av_ceil_log2(avctx->channels);
int bits_needed = avctx->channels * chan_pos_bits + 7;
if (get_bits_left(&gb) < bits_needed)
return AVERROR_INVALIDDATA;
if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
return AVERROR(ENOMEM);
ctx->cs_switch = 1;
for (i = 0; i < avctx->channels; i++) {
sconf->chan_pos[i] = -1;
}
for (i = 0; i < avctx->channels; i++) {
int idx;
idx = get_bits(&gb, chan_pos_bits);
if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
ctx->cs_switch = 0;
break;
}
sconf->chan_pos[idx] = i;
}
align_get_bits(&gb);
}
// read fixed header and trailer sizes,
// if size = 0xFFFFFFFF then there is no data field!
if (get_bits_left(&gb) < 64)
return AVERROR_INVALIDDATA;
header_size = get_bits_long(&gb, 32);
trailer_size = get_bits_long(&gb, 32);
if (header_size == 0xFFFFFFFF)
header_size = 0;
if (trailer_size == 0xFFFFFFFF)
trailer_size = 0;
ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
// skip the header and trailer data
if (get_bits_left(&gb) < ht_size)
return AVERROR_INVALIDDATA;
if (ht_size > INT32_MAX)
return AVERROR_PATCHWELCOME;
skip_bits_long(&gb, ht_size);
// initialize CRC calculation
if (sconf->crc_enabled) {
if (get_bits_left(&gb) < 32)
return AVERROR_INVALIDDATA;
if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
ctx->crc = 0xFFFFFFFF;
ctx->crc_org = ~get_bits_long(&gb, 32);
} else
skip_bits_long(&gb, 32);
}
// no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
dprint_specific_config(ctx);
return 0;
}
/** Check the ALSSpecificConfig for unsupported features.
*/
static int check_specific_config(ALSDecContext *ctx)
{
ALSSpecificConfig *sconf = &ctx->sconf;
int error = 0;
// report unsupported feature and set error value
#define MISSING_ERR(cond, str, errval) \
{ \
if (cond) { \
avpriv_report_missing_feature(ctx->avctx, \
str); \
error = errval; \
} \
}
MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
return error;
}
/** Parse the bs_info field to extract the block partitioning used in
* block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
*/
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
unsigned int div, unsigned int **div_blocks,
unsigned int *num_blocks)
{
if (n < 31 && ((bs_info << n) & 0x40000000)) {
// if the level is valid and the investigated bit n is set
// then recursively check both children at bits (2n+1) and (2n+2)
n *= 2;
div += 1;
parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
} else {
// else the bit is not set or the last level has been reached
// (bit implicitly not set)
**div_blocks = div;
(*div_blocks)++;
(*num_blocks)++;
}
}
/** Read and decode a Rice codeword.
*/
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
{
int max = get_bits_left(gb) - k;
unsigned q = get_unary(gb, 0, max);
int r = k ? get_bits1(gb) : !(q & 1);
if (k > 1) {
q <<= (k - 1);
q += get_bits_long(gb, k - 1);
} else if (!k) {
q >>= 1;
}
return r ? q : ~q;
}
/** Convert PARCOR coefficient k to direct filter coefficient.
*/
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
{
int i, j;
for (i = 0, j = k - 1; i < j; i++, j--) {
unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
cof[i] += tmp1;
}
if (i == j)
cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
cof[k] = par[k];
}
/** Read block switching field if necessary and set actual block sizes.
* Also assure that the block sizes of the last frame correspond to the
* actual number of samples.
*/
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
uint32_t *bs_info)
{
ALSSpecificConfig *sconf = &ctx->sconf;
GetBitContext *gb = &ctx->gb;
unsigned int *ptr_div_blocks = div_blocks;
unsigned int b;
if (sconf->block_switching) {
unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
*bs_info = get_bits_long(gb, bs_info_len);
*bs_info <<= (32 - bs_info_len);
}
ctx->num_blocks = 0;
parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
// The last frame may have an overdetermined block structure given in
// the bitstream. In that case the defined block structure would need
// more samples than available to be consistent.
// The block structure is actually used but the block sizes are adapted
// to fit the actual number of available samples.
// Example: 5 samples, 2nd level block sizes: 2 2 2 2.
// This results in the actual block sizes: 2 2 1 0.
// This is not specified in 14496-3 but actually done by the reference
// codec RM22 revision 2.
// This appears to happen in case of an odd number of samples in the last
// frame which is actually not allowed by the block length switching part
// of 14496-3.
// The ALS conformance files feature an odd number of samples in the last
// frame.
for (b = 0; b < ctx->num_blocks; b++)
div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
if (ctx->cur_frame_length != ctx->sconf.frame_length) {
unsigned int remaining = ctx->cur_frame_length;
for (b = 0; b < ctx->num_blocks; b++) {
if (remaining <= div_blocks[b]) {
div_blocks[b] = remaining;
ctx->num_blocks = b + 1;
break;
}
remaining -= div_blocks[b];
}
}
}
/** Read the block data for a constant block
*/
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
ALSSpecificConfig *sconf = &ctx->sconf;
AVCodecContext *avctx = ctx->avctx;
GetBitContext *gb = &ctx->gb;
if (bd->block_length <= 0)
return AVERROR_INVALIDDATA;
*bd->raw_samples = 0;
*bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
bd->js_blocks = get_bits1(gb);
// skip 5 reserved bits
skip_bits(gb, 5);
if (*bd->const_block) {
unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
*bd->raw_samples = get_sbits_long(gb, const_val_bits);
}
// ensure constant block decoding by reusing this field
*bd->const_block = 1;
return 0;
}
/** Decode the block data for a constant block
*/
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
int smp = bd->block_length - 1;
int32_t val = *bd->raw_samples;
int32_t *dst = bd->raw_samples + 1;
// write raw samples into buffer
for (; smp; smp--)
*dst++ = val;
}
/** Read the block data for a non-constant block
*/
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
ALSSpecificConfig *sconf = &ctx->sconf;
AVCodecContext *avctx = ctx->avctx;
GetBitContext *gb = &ctx->gb;
unsigned int k;
unsigned int s[8];
unsigned int sx[8];
unsigned int sub_blocks, log2_sub_blocks, sb_length;
unsigned int start = 0;
unsigned int opt_order;
int sb;
int32_t *quant_cof = bd->quant_cof;
int32_t *current_res;
// ensure variable block decoding by reusing this field
*bd->const_block = 0;
*bd->opt_order = 1;
bd->js_blocks = get_bits1(gb);
opt_order = *bd->opt_order;
// determine the number of subblocks for entropy decoding
if (!sconf->bgmc && !sconf->sb_part) {
log2_sub_blocks = 0;
} else {
if (sconf->bgmc && sconf->sb_part)
log2_sub_blocks = get_bits(gb, 2);
else
log2_sub_blocks = 2 * get_bits1(gb);
}
sub_blocks = 1 << log2_sub_blocks;
// do not continue in case of a damaged stream since
// block_length must be evenly divisible by sub_blocks
if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
av_log(avctx, AV_LOG_WARNING,
"Block length is not evenly divisible by the number of subblocks.\n");
return AVERROR_INVALIDDATA;
}
sb_length = bd->block_length >> log2_sub_blocks;
if (sconf->bgmc) {
s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
for (k = 1; k < sub_blocks; k++)
s[k] = s[k - 1] + decode_rice(gb, 2);
for (k = 0; k < sub_blocks; k++) {
sx[k] = s[k] & 0x0F;
s [k] >>= 4;
}
} else {
s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
for (k = 1; k < sub_blocks; k++)
s[k] = s[k - 1] + decode_rice(gb, 0);
}
for (k = 1; k < sub_blocks; k++)
if (s[k] > 32) {
av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(gb))
*bd->shift_lsbs = get_bits(gb, 4) + 1;
*bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
if (!sconf->rlslms) {
if (sconf->adapt_order && sconf->max_order) {
int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
2, sconf->max_order + 1));
*bd->opt_order = get_bits(gb, opt_order_length);
if (*bd->opt_order > sconf->max_order) {
*bd->opt_order = sconf->max_order;
av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
return AVERROR_INVALIDDATA;
}
} else {
*bd->opt_order = sconf->max_order;
}
opt_order = *bd->opt_order;
if (opt_order) {
int add_base;
if (sconf->coef_table == 3) {
add_base = 0x7F;
// read coefficient 0
quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
// read coefficient 1
if (opt_order > 1)
quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
// read coefficients 2 to opt_order
for (k = 2; k < opt_order; k++)
quant_cof[k] = get_bits(gb, 7);
} else {
int k_max;
add_base = 1;
// read coefficient 0 to 19
k_max = FFMIN(opt_order, 20);
for (k = 0; k < k_max; k++) {
int rice_param = parcor_rice_table[sconf->coef_table][k][1];
int offset = parcor_rice_table[sconf->coef_table][k][0];
quant_cof[k] = decode_rice(gb, rice_param) + offset;
if (quant_cof[k] < -64 || quant_cof[k] > 63) {
av_log(avctx, AV_LOG_ERROR,
"quant_cof %"PRId32" is out of range.\n",
quant_cof[k]);
return AVERROR_INVALIDDATA;
}
}
// read coefficients 20 to 126
k_max = FFMIN(opt_order, 127);
for (; k < k_max; k++)
quant_cof[k] = decode_rice(gb, 2) + (k & 1);
// read coefficients 127 to opt_order
for (; k < opt_order; k++)
quant_cof[k] = decode_rice(gb, 1);
quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
if (opt_order > 1)
quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
}
for (k = 2; k < opt_order; k++)
quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
}
}
// read LTP gain and lag values
if (sconf->long_term_prediction) {
*bd->use_ltp = get_bits1(gb);
if (*bd->use_ltp) {
int r, c;
bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
r = get_unary(gb, 0, 4);
c = get_bits(gb, 2);
if (r >= 4) {
av_log(avctx, AV_LOG_ERROR, "r overflow\n");
return AVERROR_INVALIDDATA;
}
bd->ltp_gain[2] = ltp_gain_values[r][c];
bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
*bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
*bd->ltp_lag += FFMAX(4, opt_order + 1);
}
}
// read first value and residuals in case of a random access block
if (bd->ra_block) {
start = FFMIN(opt_order, 3);
av_assert0(sb_length <= sconf->frame_length);
if (sb_length <= start) {
// opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
return AVERROR_PATCHWELCOME;
}
if (opt_order)
bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
if (opt_order > 1)
bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
if (opt_order > 2)
bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
}
// read all residuals
if (sconf->bgmc) {
int delta[8];
unsigned int k [8];
unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
// read most significant bits
unsigned int high;
unsigned int low;
unsigned int value;
int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
if (ret < 0)
return ret;
current_res = bd->raw_samples + start;
for (sb = 0; sb < sub_blocks; sb++) {
unsigned int sb_len = sb_length - (sb ? 0 : start);
k [sb] = s[sb] > b ? s[sb] - b : 0;
delta[sb] = 5 - s[sb] + k[sb];
if (k[sb] >= 32)
return AVERROR_INVALIDDATA;
ff_bgmc_decode(gb, sb_len, current_res,
delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
current_res += sb_len;
}
ff_bgmc_decode_end(gb);
// read least significant bits and tails
current_res = bd->raw_samples + start;
for (sb = 0; sb < sub_blocks; sb++, start = 0) {
unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
unsigned int cur_k = k[sb];
unsigned int cur_s = s[sb];
for (; start < sb_length; start++) {
int32_t res = *current_res;
if (res == cur_tail_code) {
unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
<< (5 - delta[sb]);
res = decode_rice(gb, cur_s);
if (res >= 0) {
res += (max_msb ) << cur_k;
} else {
res -= (max_msb - 1) << cur_k;
}
} else {
if (res > cur_tail_code)
res--;
if (res & 1)
res = -res;
res >>= 1;
if (cur_k) {
res *= 1U << cur_k;
res |= get_bits_long(gb, cur_k);
}
}
*current_res++ = res;
}
}
} else {
current_res = bd->raw_samples + start;
for (sb = 0; sb < sub_blocks; sb++, start = 0)
for (; start < sb_length; start++)
*current_res++ = decode_rice(gb, s[sb]);
}
return 0;
}
/** Decode the block data for a non-constant block
*/
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
ALSSpecificConfig *sconf = &ctx->sconf;
unsigned int block_length = bd->block_length;
unsigned int smp = 0;
unsigned int k;
int opt_order = *bd->opt_order;
int sb;
int64_t y;
int32_t *quant_cof = bd->quant_cof;
int32_t *lpc_cof = bd->lpc_cof;
int32_t *raw_samples = bd->raw_samples;
int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
// reverse long-term prediction
if (*bd->use_ltp) {
int ltp_smp;
for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
int center = ltp_smp - *bd->ltp_lag;
int begin = FFMAX(0, center - 2);
int end = center + 3;
int tab = 5 - (end - begin);
int base;
y = 1 << 6;
for (base = begin; base < end; base++, tab++)
y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
raw_samples[ltp_smp] += y >> 7;
}
}
// reconstruct all samples from residuals
if (bd->ra_block) {
for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
y = 1 << 19;
for (sb = 0; sb < smp; sb++)
y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
*raw_samples++ -= y >> 20;
parcor_to_lpc(smp, quant_cof, lpc_cof);
}
} else {
for (k = 0; k < opt_order; k++)
parcor_to_lpc(k, quant_cof, lpc_cof);
// store previous samples in case that they have to be altered
if (*bd->store_prev_samples)
memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
sizeof(*bd->prev_raw_samples) * sconf->max_order);
// reconstruct difference signal for prediction (joint-stereo)
if (bd->js_blocks && bd->raw_other) {
uint32_t *left, *right;
if (bd->raw_other > raw_samples) { // D = R - L
left = raw_samples;
right = bd->raw_other;
} else { // D = R - L
left = bd->raw_other;
right = raw_samples;
}
for (sb = -1; sb >= -sconf->max_order; sb--)
raw_samples[sb] = right[sb] - left[sb];
}
// reconstruct shifted signal
if (*bd->shift_lsbs)
for (sb = -1; sb >= -sconf->max_order; sb--)
raw_samples[sb] >>= *bd->shift_lsbs;
}
// reverse linear prediction coefficients for efficiency
lpc_cof = lpc_cof + opt_order;
for (sb = 0; sb < opt_order; sb++)
lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
// reconstruct raw samples
raw_samples = bd->raw_samples + smp;
lpc_cof = lpc_cof_reversed + opt_order;
for (; raw_samples < raw_samples_end; raw_samples++) {
y = 1 << 19;
for (sb = -opt_order; sb < 0; sb++)
y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
*raw_samples -= y >> 20;
}
raw_samples = bd->raw_samples;
// restore previous samples in case that they have been altered
if (*bd->store_prev_samples)
memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
sizeof(*raw_samples) * sconf->max_order);
return 0;
}
/** Read the block data.
*/
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
{
int ret;
GetBitContext *gb = &ctx->gb;
ALSSpecificConfig *sconf = &ctx->sconf;
*bd->shift_lsbs = 0;
if (get_bits_left(gb) < 7)
return AVERROR_INVALIDDATA;
// read block type flag and read the samples accordingly
if (get_bits1(gb)) {
ret = read_var_block_data(ctx, bd);
} else {
ret = read_const_block_data(ctx, bd);
}
if (!sconf->mc_coding || ctx->js_switch)
align_get_bits(gb);
return ret;
}
/** Decode the block data.
*/
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
unsigned int smp;
int ret = 0;
// read block type flag and read the samples accordingly
if (*bd->const_block)
decode_const_block_data(ctx, bd);
else
ret = decode_var_block_data(ctx, bd); // always return 0
if (ret < 0)
return ret;
// TODO: read RLSLMS extension data
if (*bd->shift_lsbs)
for (smp = 0; smp < bd->block_length; smp++)
bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
return 0;
}
/** Read and decode block data successively.
*/
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
int ret;
if ((ret = read_block(ctx, bd)) < 0)
return ret;
return decode_block(ctx, bd);
}
/** Compute the number of samples left to decode for the current frame and
* sets these samples to zero.
*/
static void zero_remaining(unsigned int b, unsigned int b_max,
const unsigned int *div_blocks, int32_t *buf)
{
unsigned int count = 0;
while (b < b_max)
count += div_blocks[b++];
if (count)
memset(buf, 0, sizeof(*buf) * count);
}
/** Decode blocks independently.
*/
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
unsigned int c, const unsigned int *div_blocks,
unsigned int *js_blocks)
{
int ret;
unsigned int b;
ALSBlockData bd = { 0 };
bd.ra_block = ra_frame;
bd.const_block = ctx->const_block;
bd.shift_lsbs = ctx->shift_lsbs;
bd.opt_order = ctx->opt_order;
bd.store_prev_samples = ctx->store_prev_samples;
bd.use_ltp = ctx->use_ltp;
bd.ltp_lag = ctx->ltp_lag;
bd.ltp_gain = ctx->ltp_gain[0];
bd.quant_cof = ctx->quant_cof[0];
bd.lpc_cof = ctx->lpc_cof[0];
bd.prev_raw_samples = ctx->prev_raw_samples;
bd.raw_samples = ctx->raw_samples[c];
for (b = 0; b < ctx->num_blocks; b++) {
bd.block_length = div_blocks[b];
if ((ret = read_decode_block(ctx, &bd)) < 0) {
// damaged block, write zero for the rest of the frame
zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
return ret;
}
bd.raw_samples += div_blocks[b];
bd.ra_block = 0;
}
return 0;
}
/** Decode blocks dependently.
*/
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
unsigned int c, const unsigned int *div_blocks,
unsigned int *js_blocks)
{
ALSSpecificConfig *sconf = &ctx->sconf;
unsigned int offset = 0;
unsigned int b;
int ret;
ALSBlockData bd[2] = { { 0 } };
bd[0].ra_block = ra_frame;
bd[0].const_block = ctx->const_block;
bd[0].shift_lsbs = ctx->shift_lsbs;
bd[0].opt_order = ctx->opt_order;
bd[0].store_prev_samples = ctx->store_prev_samples;
bd[0].use_ltp = ctx->use_ltp;
bd[0].ltp_lag = ctx->ltp_lag;
bd[0].ltp_gain = ctx->ltp_gain[0];
bd[0].quant_cof = ctx->quant_cof[0];
bd[0].lpc_cof = ctx->lpc_cof[0];
bd[0].prev_raw_samples = ctx->prev_raw_samples;
bd[0].js_blocks = *js_blocks;
bd[1].ra_block = ra_frame;
bd[1].const_block = ctx->const_block;
bd[1].shift_lsbs = ctx->shift_lsbs;
bd[1].opt_order = ctx->opt_order;
bd[1].store_prev_samples = ctx->store_prev_samples;
bd[1].use_ltp = ctx->use_ltp;
bd[1].ltp_lag = ctx->ltp_lag;
bd[1].ltp_gain = ctx->ltp_gain[0];
bd[1].quant_cof = ctx->quant_cof[0];
bd[1].lpc_cof = ctx->lpc_cof[0];
bd[1].prev_raw_samples = ctx->prev_raw_samples;
bd[1].js_blocks = *(js_blocks + 1);
// decode all blocks
for (b = 0; b < ctx->num_blocks; b++) {
unsigned int s;
bd[0].block_length = div_blocks[b];
bd[1].block_length = div_blocks[b];
bd[0].raw_samples = ctx->raw_samples[c ] + offset;
bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
bd[0].raw_other = bd[1].raw_samples;
bd[1].raw_other = bd[0].raw_samples;
if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
(ret = read_decode_block(ctx, &bd[1])) < 0)
goto fail;
// reconstruct joint-stereo blocks
if (bd[0].js_blocks) {
if (bd[1].js_blocks)
av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
for (s = 0; s < div_blocks[b]; s++)
bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
} else if (bd[1].js_blocks) {
for (s = 0; s < div_blocks[b]; s++)
bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
}
offset += div_blocks[b];
bd[0].ra_block = 0;
bd[1].ra_block = 0;
}
// store carryover raw samples,
// the others channel raw samples are stored by the calling function.
memmove(ctx->raw_samples[c] - sconf->max_order,
ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
sizeof(*ctx->raw_samples[c]) * sconf->max_order);
return 0;
fail:
// damaged block, write zero for the rest of the frame
zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
return ret;
}
static inline int als_weighting(GetBitContext *gb, int k, int off)
{
int idx = av_clip(decode_rice(gb, k) + off,
0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
return mcc_weightings[idx];
}
/** Read the channel data.
*/
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
{
GetBitContext *gb = &ctx->gb;
ALSChannelData *current = cd;
unsigned int channels = ctx->avctx->channels;
int entries = 0;
while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
if (current->master_channel >= channels) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
return AVERROR_INVALIDDATA;
}
if (current->master_channel != c) {
current->time_diff_flag = get_bits1(gb);
current->weighting[0] = als_weighting(gb, 1, 16);
current->weighting[1] = als_weighting(gb, 2, 14);
current->weighting[2] = als_weighting(gb, 1, 16);
if (current->time_diff_flag) {
current->weighting[3] = als_weighting(gb, 1, 16);
current->weighting[4] = als_weighting(gb, 1, 16);
current->weighting[5] = als_weighting(gb, 1, 16);
current->time_diff_sign = get_bits1(gb);
current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
}
}
current++;
entries++;
}
if (entries == channels) {
av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
return AVERROR_INVALIDDATA;
}
align_get_bits(gb);
return 0;
}
/** Recursively reverts the inter-channel correlation for a block.
*/
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
ALSChannelData **cd, int *reverted,
unsigned int offset, int c)
{
ALSChannelData *ch = cd[c];
unsigned int dep = 0;
unsigned int channels = ctx->avctx->channels;
unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
if (reverted[c])
return 0;
reverted[c] = 1;
while (dep < channels && !ch[dep].stop_flag) {
revert_channel_correlation(ctx, bd, cd, reverted, offset,
ch[dep].master_channel);
dep++;
}
if (dep == channels) {
av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
return AVERROR_INVALIDDATA;
}
bd->const_block = ctx->const_block + c;
bd->shift_lsbs = ctx->shift_lsbs + c;
bd->opt_order = ctx->opt_order + c;
bd->store_prev_samples = ctx->store_prev_samples + c;
bd->use_ltp = ctx->use_ltp + c;
bd->ltp_lag = ctx->ltp_lag + c;
bd->ltp_gain = ctx->ltp_gain[c];
bd->lpc_cof = ctx->lpc_cof[c];
bd->quant_cof = ctx->quant_cof[c];
bd->raw_samples = ctx->raw_samples[c] + offset;
for (dep = 0; !ch[dep].stop_flag; dep++) {
ptrdiff_t smp;
ptrdiff_t begin = 1;
ptrdiff_t end = bd->block_length - 1;
int64_t y;
int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
if (ch[dep].master_channel == c)
continue;
if (ch[dep].time_diff_flag) {
int t = ch[dep].time_diff_index;
if (ch[dep].time_diff_sign) {
t = -t;
if (begin < t) {
av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
return AVERROR_INVALIDDATA;
}
begin -= t;
} else {
if (end < t) {
av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
return AVERROR_INVALIDDATA;
}
end -= t;
}
if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
av_log(ctx->avctx, AV_LOG_ERROR,
"sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
return AVERROR_INVALIDDATA;
}
for (smp = begin; smp < end; smp++) {
y = (1 << 6) +
MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
MUL64(ch[dep].weighting[1], master[smp ]) +
MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
MUL64(ch[dep].weighting[4], master[smp + t]) +
MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
bd->raw_samples[smp] += y >> 7;
}
} else {
if (begin - 1 < ctx->raw_buffer - master ||
end + 1 > ctx->raw_buffer + channels * channel_size - master) {
av_log(ctx->avctx, AV_LOG_ERROR,
"sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
master + begin - 1, master + end + 1,
ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
return AVERROR_INVALIDDATA;
}
for (smp = begin; smp < end; smp++) {
y = (1 << 6) +
MUL64(ch[dep].weighting[0], master[smp - 1]) +
MUL64(ch[dep].weighting[1], master[smp ]) +
MUL64(ch[dep].weighting[2], master[smp + 1]);
bd->raw_samples[smp] += y >> 7;
}
}
}
return 0;
}
/** multiply two softfloats and handle the rounding off
*/
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
uint64_t mantissa_temp;
uint64_t mask_64;
int cutoff_bit_count;
unsigned char last_2_bits;
unsigned int mantissa;
int32_t sign;
uint32_t return_val = 0;
int bit_count = 48;
sign = a.sign ^ b.sign;
// Multiply mantissa bits in a 64-bit register
mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
mask_64 = (uint64_t)0x1 << 47;
if (!mantissa_temp)
return FLOAT_0;
// Count the valid bit count
while (!(mantissa_temp & mask_64) && mask_64) {
bit_count--;
mask_64 >>= 1;
}
// Round off
cutoff_bit_count = bit_count - 24;
if (cutoff_bit_count > 0) {
last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
// Need to round up
mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
}
}
if (cutoff_bit_count >= 0) {
mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
} else {
mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
}
// Need one more shift?
if (mantissa & 0x01000000ul) {
bit_count++;
mantissa >>= 1;
}
if (!sign) {
return_val = 0x80000000U;
}
return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
return_val |= mantissa;
return av_bits2sf_ieee754(return_val);
}
/** Read and decode the floating point sample data
*/
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
AVCodecContext *avctx = ctx->avctx;
GetBitContext *gb = &ctx->gb;
SoftFloat_IEEE754 *acf = ctx->acf;
int *shift_value = ctx->shift_value;
int *last_shift_value = ctx->last_shift_value;
int *last_acf_mantissa = ctx->last_acf_mantissa;
int **raw_mantissa = ctx->raw_mantissa;
int *nbits = ctx->nbits;
unsigned char *larray = ctx->larray;
int frame_length = ctx->cur_frame_length;
SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
unsigned int partA_flag;
unsigned int highest_byte;
unsigned int shift_amp;
uint32_t tmp_32;
int use_acf;
int nchars;
int i;
int c;
long k;
long nbits_aligned;
unsigned long acc;
unsigned long j;
uint32_t sign;
uint32_t e;
uint32_t mantissa;
skip_bits_long(gb, 32); //num_bytes_diff_float
use_acf = get_bits1(gb);
if (ra_frame) {
memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
ff_mlz_flush_dict(ctx->mlz);
}
if (avctx->channels * 8 > get_bits_left(gb))
return AVERROR_INVALIDDATA;
for (c = 0; c < avctx->channels; ++c) {
if (use_acf) {
//acf_flag
if (get_bits1(gb)) {
tmp_32 = get_bits(gb, 23);
last_acf_mantissa[c] = tmp_32;
} else {
tmp_32 = last_acf_mantissa[c];
}
acf[c] = av_bits2sf_ieee754(tmp_32);
} else {
acf[c] = FLOAT_1;
}
highest_byte = get_bits(gb, 2);
partA_flag = get_bits1(gb);
shift_amp = get_bits1(gb);
if (shift_amp) {
shift_value[c] = get_bits(gb, 8);
last_shift_value[c] = shift_value[c];
} else {
shift_value[c] = last_shift_value[c];
}
if (partA_flag) {
if (!get_bits1(gb)) { //uncompressed
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i] == 0) {
ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
}
}
} else { //compressed
nchars = 0;
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i] == 0) {
nchars += 4;
}
}
tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
if(tmp_32 != nchars) {
av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < frame_length; ++i) {
ctx->raw_mantissa[c][i] = AV_RB32(larray);
}
}
}
//decode part B
if (highest_byte) {
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i] != 0) {
//The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
} else {
nbits[i] = 23;
}
nbits[i] = FFMIN(nbits[i], highest_byte*8);
}
}
if (!get_bits1(gb)) { //uncompressed
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i] != 0) {
raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
}
}
} else { //compressed
nchars = 0;
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i]) {
nchars += (int) nbits[i] / 8;
if (nbits[i] & 7) {
++nchars;
}
}
}
tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
if(tmp_32 != nchars) {
av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
return AVERROR_INVALIDDATA;
}
j = 0;
for (i = 0; i < frame_length; ++i) {
if (ctx->raw_samples[c][i]) {
if (nbits[i] & 7) {
nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
} else {
nbits_aligned = nbits[i];
}
acc = 0;
for (k = 0; k < nbits_aligned/8; ++k) {
acc = (acc << 8) + larray[j++];
}
acc >>= (nbits_aligned - nbits[i]);
raw_mantissa[c][i] = acc;
}
}
}
}
for (i = 0; i < frame_length; ++i) {
SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
if (ctx->raw_samples[c][i] != 0) {
if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
pcm_sf = multiply(acf[c], pcm_sf);
}
sign = pcm_sf.sign;
e = pcm_sf.exp;
mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
while(mantissa >= 0x1000000) {
e++;
mantissa >>= 1;
}
if (mantissa) e += (shift_value[c] - 127);
mantissa &= 0x007fffffUL;
tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
ctx->raw_samples[c][i] = tmp_32;
} else {
ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
}
}
align_get_bits(gb);
}
return 0;
}
/** Read the frame data.
*/
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
{
ALSSpecificConfig *sconf = &ctx->sconf;
AVCodecContext *avctx = ctx->avctx;
GetBitContext *gb = &ctx->gb;
unsigned int div_blocks[32]; ///< block sizes.
int c;
unsigned int js_blocks[2];
uint32_t bs_info = 0;
int ret;
// skip the size of the ra unit if present in the frame
if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
skip_bits_long(gb, 32);
if (sconf->mc_coding && sconf->joint_stereo) {
ctx->js_switch = get_bits1(gb);
align_get_bits(gb);
}
if (!sconf->mc_coding || ctx->js_switch) {
int independent_bs = !sconf->joint_stereo;
for (c = 0; c < avctx->channels; c++) {
js_blocks[0] = 0;
js_blocks[1] = 0;
get_block_sizes(ctx, div_blocks, &bs_info);
// if joint_stereo and block_switching is set, independent decoding
// is signaled via the first bit of bs_info
if (sconf->joint_stereo && sconf->block_switching)
if (bs_info >> 31)
independent_bs = 2;
// if this is the last channel, it has to be decoded independently
if (c == avctx->channels - 1 || (c & 1))
independent_bs = 1;
if (independent_bs) {
ret = decode_blocks_ind(ctx, ra_frame, c,
div_blocks, js_blocks);
if (ret < 0)
return ret;
independent_bs--;
} else {
ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
if (ret < 0)
return ret;
c++;
}
// store carryover raw samples
memmove(ctx->raw_samples[c] - sconf->max_order,
ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
sizeof(*ctx->raw_samples[c]) * sconf->max_order);
ctx->highest_decoded_channel = c;
}
} else { // multi-channel coding
ALSBlockData bd = { 0 };
int b, ret;
int *reverted_channels = ctx->reverted_channels;
unsigned int offset = 0;
for (c = 0; c < avctx->channels; c++)
if (ctx->chan_data[c] < ctx->chan_data_buffer) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
return AVERROR_INVALIDDATA;
}
memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
bd.ra_block = ra_frame;
bd.prev_raw_samples = ctx->prev_raw_samples;
get_block_sizes(ctx, div_blocks, &bs_info);
for (b = 0; b < ctx->num_blocks; b++) {
bd.block_length = div_blocks[b];
if (bd.block_length <= 0) {
av_log(ctx->avctx, AV_LOG_WARNING,
"Invalid block length %u in channel data!\n",
bd.block_length);
continue;
}
for (c = 0; c < avctx->channels; c++) {
bd.const_block = ctx->const_block + c;
bd.shift_lsbs = ctx->shift_lsbs + c;
bd.opt_order = ctx->opt_order + c;
bd.store_prev_samples = ctx->store_prev_samples + c;
bd.use_ltp = ctx->use_ltp + c;
bd.ltp_lag = ctx->ltp_lag + c;
bd.ltp_gain = ctx->ltp_gain[c];
bd.lpc_cof = ctx->lpc_cof[c];
bd.quant_cof = ctx->quant_cof[c];
bd.raw_samples = ctx->raw_samples[c] + offset;
bd.raw_other = NULL;
if ((ret = read_block(ctx, &bd)) < 0)
return ret;
if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
return ret;
}
for (c = 0; c < avctx->channels; c++) {
ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
reverted_channels, offset, c);
if (ret < 0)
return ret;
}
for (c = 0; c < avctx->channels; c++) {
bd.const_block = ctx->const_block + c;
bd.shift_lsbs = ctx->shift_lsbs + c;
bd.opt_order = ctx->opt_order + c;
bd.store_prev_samples = ctx->store_prev_samples + c;
bd.use_ltp = ctx->use_ltp + c;
bd.ltp_lag = ctx->ltp_lag + c;
bd.ltp_gain = ctx->ltp_gain[c];
bd.lpc_cof = ctx->lpc_cof[c];
bd.quant_cof = ctx->quant_cof[c];
bd.raw_samples = ctx->raw_samples[c] + offset;
if ((ret = decode_block(ctx, &bd)) < 0)
return ret;
ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
}
memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
offset += div_blocks[b];
bd.ra_block = 0;
}
// store carryover raw samples
for (c = 0; c < avctx->channels; c++)
memmove(ctx->raw_samples[c] - sconf->max_order,
ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
sizeof(*ctx->raw_samples[c]) * sconf->max_order);
}
if (sconf->floating) {
read_diff_float_data(ctx, ra_frame);
}
if (get_bits_left(gb) < 0) {
av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
return AVERROR_INVALIDDATA;
}
return 0;
}
/** Decode an ALS frame.
*/
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
AVPacket *avpkt)
{
ALSDecContext *ctx = avctx->priv_data;
AVFrame *frame = data;
ALSSpecificConfig *sconf = &ctx->sconf;
const uint8_t *buffer = avpkt->data;
int buffer_size = avpkt->size;
int invalid_frame, ret;
unsigned int c, sample, ra_frame, bytes_read, shift;
if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
return ret;
// In the case that the distance between random access frames is set to zero
// (sconf->ra_distance == 0) no frame is treated as a random access frame.
// For the first frame, if prediction is used, all samples used from the
// previous frame are assumed to be zero.
ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
// the last frame to decode might have a different length
if (sconf->samples != 0xFFFFFFFF)
ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
sconf->frame_length);
else
ctx->cur_frame_length = sconf->frame_length;
ctx->highest_decoded_channel = -1;
// decode the frame data
if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
av_log(ctx->avctx, AV_LOG_WARNING,
"Reading frame data failed. Skipping RA unit.\n");
if (ctx->highest_decoded_channel == -1) {
av_log(ctx->avctx, AV_LOG_WARNING,
"No channel data decoded.\n");
return AVERROR_INVALIDDATA;
}
ctx->frame_id++;
/* get output buffer */
frame->nb_samples = ctx->cur_frame_length;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// transform decoded frame into output format
#define INTERLEAVE_OUTPUT(bps) \
{ \
int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
int channels = avctx->channels; \
int32_t *raw_samples = ctx->raw_samples[0]; \
int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1; \
shift = bps - ctx->avctx->bits_per_raw_sample; \
if (!ctx->cs_switch) { \
for (sample = 0; sample < ctx->cur_frame_length; sample++) \
for (c = 0; c < channels; c++) \
*dest++ = raw_samples[c*raw_step + sample] * (1U << shift); \
} else { \
for (sample = 0; sample < ctx->cur_frame_length; sample++) \
for (c = 0; c < channels; c++) \
*dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
} \
}
if (ctx->avctx->bits_per_raw_sample <= 16) {
INTERLEAVE_OUTPUT(16)
} else {
INTERLEAVE_OUTPUT(32)
}
// update CRC
if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
int swap = HAVE_BIGENDIAN != sconf->msb_first;
if (ctx->avctx->bits_per_raw_sample == 24) {
int32_t *src = (int32_t *)frame->data[0];
for (sample = 0;
sample < ctx->cur_frame_length * avctx->channels;
sample++) {
int32_t v;
if (swap)
v = av_bswap32(src[sample]);
else
v = src[sample];
if (!HAVE_BIGENDIAN)
v >>= 8;
ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
}
} else {
uint8_t *crc_source;
if (swap) {
if (ctx->avctx->bits_per_raw_sample <= 16) {
int16_t *src = (int16_t*) frame->data[0];
int16_t *dest = (int16_t*) ctx->crc_buffer;
for (sample = 0;
sample < ctx->cur_frame_length * avctx->channels;
sample++)
*dest++ = av_bswap16(src[sample]);
} else {
ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
(uint32_t *) frame->data[0],
ctx->cur_frame_length * avctx->channels);
}
crc_source = ctx->crc_buffer;
} else {
crc_source = frame->data[0];
}
ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
ctx->cur_frame_length * avctx->channels *
av_get_bytes_per_sample(avctx->sample_fmt));
}
// check CRC sums if this is the last frame
if (ctx->cur_frame_length != sconf->frame_length &&
ctx->crc_org != ctx->crc) {
av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
if (avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
}
*got_frame_ptr = 1;
bytes_read = invalid_frame ? buffer_size :
(get_bits_count(&ctx->gb) + 7) >> 3;
return bytes_read;
}
/** Uninitialize the ALS decoder.
*/
static av_cold int decode_end(AVCodecContext *avctx)
{
ALSDecContext *ctx = avctx->priv_data;
int i;
av_freep(&ctx->sconf.chan_pos);
ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
av_freep(&ctx->const_block);
av_freep(&ctx->shift_lsbs);
av_freep(&ctx->opt_order);
av_freep(&ctx->store_prev_samples);
av_freep(&ctx->use_ltp);
av_freep(&ctx->ltp_lag);
av_freep(&ctx->ltp_gain);
av_freep(&ctx->ltp_gain_buffer);
av_freep(&ctx->quant_cof);
av_freep(&ctx->lpc_cof);
av_freep(&ctx->quant_cof_buffer);
av_freep(&ctx->lpc_cof_buffer);
av_freep(&ctx->lpc_cof_reversed_buffer);
av_freep(&ctx->prev_raw_samples);
av_freep(&ctx->raw_samples);
av_freep(&ctx->raw_buffer);
av_freep(&ctx->chan_data);
av_freep(&ctx->chan_data_buffer);
av_freep(&ctx->reverted_channels);
av_freep(&ctx->crc_buffer);
if (ctx->mlz) {
av_freep(&ctx->mlz->dict);
av_freep(&ctx->mlz);
}
av_freep(&ctx->acf);
av_freep(&ctx->last_acf_mantissa);
av_freep(&ctx->shift_value);
av_freep(&ctx->last_shift_value);
if (ctx->raw_mantissa) {
for (i = 0; i < avctx->channels; i++) {
av_freep(&ctx->raw_mantissa[i]);
}
av_freep(&ctx->raw_mantissa);
}
av_freep(&ctx->larray);
av_freep(&ctx->nbits);
return 0;
}
/** Initialize the ALS decoder.
*/
static av_cold int decode_init(AVCodecContext *avctx)
{
unsigned int c;
unsigned int channel_size;
int num_buffers, ret;
ALSDecContext *ctx = avctx->priv_data;
ALSSpecificConfig *sconf = &ctx->sconf;
ctx->avctx = avctx;
if (!avctx->extradata) {
av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
return AVERROR_INVALIDDATA;
}
if ((ret = read_specific_config(ctx)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
goto fail;
}
if ((ret = check_specific_config(ctx)) < 0) {
goto fail;
}
if (sconf->bgmc) {
ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
if (ret < 0)
goto fail;
}
if (sconf->floating) {
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
avctx->bits_per_raw_sample = 32;
} else {
avctx->sample_fmt = sconf->resolution > 1
? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
if (avctx->bits_per_raw_sample > 32) {
av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
avctx->bits_per_raw_sample);
ret = AVERROR_INVALIDDATA;
goto fail;
}
}
// set maximum Rice parameter for progressive decoding based on resolution
// This is not specified in 14496-3 but actually done by the reference
// codec RM22 revision 2.
ctx->s_max = sconf->resolution > 1 ? 31 : 15;
// set lag value for long-term prediction
ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
(avctx->sample_rate >= 192000);
// allocate quantized parcor coefficient buffer
num_buffers = sconf->mc_coding ? avctx->channels : 1;
if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
return AVERROR_INVALIDDATA;
ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
sizeof(*ctx->quant_cof_buffer));
ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
sizeof(*ctx->lpc_cof_buffer));
ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
sizeof(*ctx->lpc_cof_buffer));
if (!ctx->quant_cof || !ctx->lpc_cof ||
!ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
!ctx->lpc_cof_reversed_buffer) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
// assign quantized parcor coefficient buffers
for (c = 0; c < num_buffers; c++) {
ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
}
// allocate and assign lag and gain data buffer for ltp mode
ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
if (!ctx->const_block || !ctx->shift_lsbs ||
!ctx->opt_order || !ctx->store_prev_samples ||
!ctx->use_ltp || !ctx->ltp_lag ||
!ctx->ltp_gain || !ctx->ltp_gain_buffer) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
for (c = 0; c < num_buffers; c++)
ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
// allocate and assign channel data buffer for mcc mode
if (sconf->mc_coding) {
ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
sizeof(*ctx->chan_data_buffer));
ctx->chan_data = av_mallocz_array(num_buffers,
sizeof(*ctx->chan_data));
ctx->reverted_channels = av_malloc_array(num_buffers,
sizeof(*ctx->reverted_channels));
if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
for (c = 0; c < num_buffers; c++)
ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
} else {
ctx->chan_data = NULL;
ctx->chan_data_buffer = NULL;
ctx->reverted_channels = NULL;
}
channel_size = sconf->frame_length + sconf->max_order;
ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
if (sconf->floating) {
ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
|| !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
ff_mlz_init_dict(avctx, ctx->mlz);
ff_mlz_flush_dict(ctx->mlz);
for (c = 0; c < avctx->channels; ++c) {
ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
}
}
// allocate previous raw sample buffer
if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
// assign raw samples buffers
ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
for (c = 1; c < avctx->channels; c++)
ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
// allocate crc buffer
if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
(avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
avctx->channels *
av_get_bytes_per_sample(avctx->sample_fmt),
sizeof(*ctx->crc_buffer));
if (!ctx->crc_buffer) {
av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
ret = AVERROR(ENOMEM);
goto fail;
}
}
ff_bswapdsp_init(&ctx->bdsp);
return 0;
fail:
return ret;
}
/** Flush (reset) the frame ID after seeking.
*/
static av_cold void flush(AVCodecContext *avctx)
{
ALSDecContext *ctx = avctx->priv_data;
ctx->frame_id = 0;
}
AVCodec ff_als_decoder = {
.name = "als",
.long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_MP4ALS,
.priv_data_size = sizeof(ALSDecContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.flush = flush,
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};