FFmpeg4/libavfilter/vf_dctdnoiz.c

839 lines
38 KiB
C

/*
* Copyright (c) 2013-2014 Clément Bœsch
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* A simple, relatively efficient and slow DCT image denoiser.
*
* @see http://www.ipol.im/pub/art/2011/ys-dct/
*
* The DCT factorization used is based on "Fast and numerically stable
* algorithms for discrete cosine transforms" from Gerlind Plonkaa & Manfred
* Tasche (DOI: 10.1016/j.laa.2004.07.015).
*/
#include "libavutil/avassert.h"
#include "libavutil/eval.h"
#include "libavutil/opt.h"
#include "internal.h"
static const char *const var_names[] = { "c", NULL };
enum { VAR_C, VAR_VARS_NB };
#define MAX_THREADS 8
typedef struct DCTdnoizContext {
const AVClass *class;
/* coefficient factor expression */
char *expr_str;
AVExpr *expr[MAX_THREADS];
double var_values[MAX_THREADS][VAR_VARS_NB];
int nb_threads;
int pr_width, pr_height; // width and height to process
float sigma; // used when no expression are st
float th; // threshold (3*sigma)
float *cbuf[2][3]; // two planar rgb color buffers
float *slices[MAX_THREADS]; // slices buffers (1 slice buffer per thread)
float *weights; // dct coeff are cumulated with overlapping; these values are used for averaging
int p_linesize; // line sizes for color and weights
int overlap; // number of block overlapping pixels
int step; // block step increment (blocksize - overlap)
int n; // 1<<n is the block size
int bsize; // block size, 1<<n
void (*filter_freq_func)(struct DCTdnoizContext *s,
const float *src, int src_linesize,
float *dst, int dst_linesize,
int thread_id);
void (*color_decorrelation)(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h);
void (*color_correlation)(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h);
} DCTdnoizContext;
#define MIN_NBITS 3 /* blocksize = 1<<3 = 8 */
#define MAX_NBITS 4 /* blocksize = 1<<4 = 16 */
#define DEFAULT_NBITS 3
#define OFFSET(x) offsetof(DCTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption dctdnoiz_options[] = {
{ "sigma", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
{ "s", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
{ "overlap", "set number of block overlapping pixels", OFFSET(overlap), AV_OPT_TYPE_INT, {.i64=-1}, -1, (1<<MAX_NBITS)-1, .flags = FLAGS },
{ "expr", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "e", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "n", "set the block size, expressed in bits", OFFSET(n), AV_OPT_TYPE_INT, {.i64=DEFAULT_NBITS}, MIN_NBITS, MAX_NBITS, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dctdnoiz);
static void av_always_inline fdct8_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb)
{
int i;
for (i = 0; i < 8; i++) {
const float x00 = src[0*src_stridea] + src[7*src_stridea];
const float x01 = src[1*src_stridea] + src[6*src_stridea];
const float x02 = src[2*src_stridea] + src[5*src_stridea];
const float x03 = src[3*src_stridea] + src[4*src_stridea];
const float x04 = src[0*src_stridea] - src[7*src_stridea];
const float x05 = src[1*src_stridea] - src[6*src_stridea];
const float x06 = src[2*src_stridea] - src[5*src_stridea];
const float x07 = src[3*src_stridea] - src[4*src_stridea];
const float x08 = x00 + x03;
const float x09 = x01 + x02;
const float x0a = x00 - x03;
const float x0b = x01 - x02;
const float x0c = 1.38703984532215f*x04 + 0.275899379282943f*x07;
const float x0d = 1.17587560241936f*x05 + 0.785694958387102f*x06;
const float x0e = -0.785694958387102f*x05 + 1.17587560241936f*x06;
const float x0f = 0.275899379282943f*x04 - 1.38703984532215f*x07;
const float x10 = 0.353553390593274f * (x0c - x0d);
const float x11 = 0.353553390593274f * (x0e - x0f);
dst[0*dst_stridea] = 0.353553390593274f * (x08 + x09);
dst[1*dst_stridea] = 0.353553390593274f * (x0c + x0d);
dst[2*dst_stridea] = 0.461939766255643f*x0a + 0.191341716182545f*x0b;
dst[3*dst_stridea] = 0.707106781186547f * (x10 - x11);
dst[4*dst_stridea] = 0.353553390593274f * (x08 - x09);
dst[5*dst_stridea] = 0.707106781186547f * (x10 + x11);
dst[6*dst_stridea] = 0.191341716182545f*x0a - 0.461939766255643f*x0b;
dst[7*dst_stridea] = 0.353553390593274f * (x0e + x0f);
dst += dst_strideb;
src += src_strideb;
}
}
static void av_always_inline idct8_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb,
int add)
{
int i;
for (i = 0; i < 8; i++) {
const float x00 = 1.4142135623731f *src[0*src_stridea];
const float x01 = 1.38703984532215f *src[1*src_stridea] + 0.275899379282943f*src[7*src_stridea];
const float x02 = 1.30656296487638f *src[2*src_stridea] + 0.541196100146197f*src[6*src_stridea];
const float x03 = 1.17587560241936f *src[3*src_stridea] + 0.785694958387102f*src[5*src_stridea];
const float x04 = 1.4142135623731f *src[4*src_stridea];
const float x05 = -0.785694958387102f*src[3*src_stridea] + 1.17587560241936f*src[5*src_stridea];
const float x06 = 0.541196100146197f*src[2*src_stridea] - 1.30656296487638f*src[6*src_stridea];
const float x07 = -0.275899379282943f*src[1*src_stridea] + 1.38703984532215f*src[7*src_stridea];
const float x09 = x00 + x04;
const float x0a = x01 + x03;
const float x0b = 1.4142135623731f*x02;
const float x0c = x00 - x04;
const float x0d = x01 - x03;
const float x0e = 0.353553390593274f * (x09 - x0b);
const float x0f = 0.353553390593274f * (x0c + x0d);
const float x10 = 0.353553390593274f * (x0c - x0d);
const float x11 = 1.4142135623731f*x06;
const float x12 = x05 + x07;
const float x13 = x05 - x07;
const float x14 = 0.353553390593274f * (x11 + x12);
const float x15 = 0.353553390593274f * (x11 - x12);
const float x16 = 0.5f*x13;
dst[0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.25f * (x09 + x0b) + 0.353553390593274f*x0a;
dst[1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x0f + x15);
dst[2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x0f - x15);
dst[3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x0e + x16);
dst[4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x0e - x16);
dst[5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x10 - x14);
dst[6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x10 + x14);
dst[7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.25f * (x09 + x0b) - 0.353553390593274f*x0a;
dst += dst_strideb;
src += src_strideb;
}
}
static void av_always_inline fdct16_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb)
{
int i;
for (i = 0; i < 16; i++) {
const float x00 = src[ 0*src_stridea] + src[15*src_stridea];
const float x01 = src[ 1*src_stridea] + src[14*src_stridea];
const float x02 = src[ 2*src_stridea] + src[13*src_stridea];
const float x03 = src[ 3*src_stridea] + src[12*src_stridea];
const float x04 = src[ 4*src_stridea] + src[11*src_stridea];
const float x05 = src[ 5*src_stridea] + src[10*src_stridea];
const float x06 = src[ 6*src_stridea] + src[ 9*src_stridea];
const float x07 = src[ 7*src_stridea] + src[ 8*src_stridea];
const float x08 = src[ 0*src_stridea] - src[15*src_stridea];
const float x09 = src[ 1*src_stridea] - src[14*src_stridea];
const float x0a = src[ 2*src_stridea] - src[13*src_stridea];
const float x0b = src[ 3*src_stridea] - src[12*src_stridea];
const float x0c = src[ 4*src_stridea] - src[11*src_stridea];
const float x0d = src[ 5*src_stridea] - src[10*src_stridea];
const float x0e = src[ 6*src_stridea] - src[ 9*src_stridea];
const float x0f = src[ 7*src_stridea] - src[ 8*src_stridea];
const float x10 = x00 + x07;
const float x11 = x01 + x06;
const float x12 = x02 + x05;
const float x13 = x03 + x04;
const float x14 = x00 - x07;
const float x15 = x01 - x06;
const float x16 = x02 - x05;
const float x17 = x03 - x04;
const float x18 = x10 + x13;
const float x19 = x11 + x12;
const float x1a = x10 - x13;
const float x1b = x11 - x12;
const float x1c = 1.38703984532215f*x14 + 0.275899379282943f*x17;
const float x1d = 1.17587560241936f*x15 + 0.785694958387102f*x16;
const float x1e = -0.785694958387102f*x15 + 1.17587560241936f *x16;
const float x1f = 0.275899379282943f*x14 - 1.38703984532215f *x17;
const float x20 = 0.25f * (x1c - x1d);
const float x21 = 0.25f * (x1e - x1f);
const float x22 = 1.40740373752638f *x08 + 0.138617169199091f*x0f;
const float x23 = 1.35331800117435f *x09 + 0.410524527522357f*x0e;
const float x24 = 1.24722501298667f *x0a + 0.666655658477747f*x0d;
const float x25 = 1.09320186700176f *x0b + 0.897167586342636f*x0c;
const float x26 = -0.897167586342636f*x0b + 1.09320186700176f *x0c;
const float x27 = 0.666655658477747f*x0a - 1.24722501298667f *x0d;
const float x28 = -0.410524527522357f*x09 + 1.35331800117435f *x0e;
const float x29 = 0.138617169199091f*x08 - 1.40740373752638f *x0f;
const float x2a = x22 + x25;
const float x2b = x23 + x24;
const float x2c = x22 - x25;
const float x2d = x23 - x24;
const float x2e = 0.25f * (x2a - x2b);
const float x2f = 0.326640741219094f*x2c + 0.135299025036549f*x2d;
const float x30 = 0.135299025036549f*x2c - 0.326640741219094f*x2d;
const float x31 = x26 + x29;
const float x32 = x27 + x28;
const float x33 = x26 - x29;
const float x34 = x27 - x28;
const float x35 = 0.25f * (x31 - x32);
const float x36 = 0.326640741219094f*x33 + 0.135299025036549f*x34;
const float x37 = 0.135299025036549f*x33 - 0.326640741219094f*x34;
dst[ 0*dst_stridea] = 0.25f * (x18 + x19);
dst[ 1*dst_stridea] = 0.25f * (x2a + x2b);
dst[ 2*dst_stridea] = 0.25f * (x1c + x1d);
dst[ 3*dst_stridea] = 0.707106781186547f * (x2f - x37);
dst[ 4*dst_stridea] = 0.326640741219094f*x1a + 0.135299025036549f*x1b;
dst[ 5*dst_stridea] = 0.707106781186547f * (x2f + x37);
dst[ 6*dst_stridea] = 0.707106781186547f * (x20 - x21);
dst[ 7*dst_stridea] = 0.707106781186547f * (x2e + x35);
dst[ 8*dst_stridea] = 0.25f * (x18 - x19);
dst[ 9*dst_stridea] = 0.707106781186547f * (x2e - x35);
dst[10*dst_stridea] = 0.707106781186547f * (x20 + x21);
dst[11*dst_stridea] = 0.707106781186547f * (x30 - x36);
dst[12*dst_stridea] = 0.135299025036549f*x1a - 0.326640741219094f*x1b;
dst[13*dst_stridea] = 0.707106781186547f * (x30 + x36);
dst[14*dst_stridea] = 0.25f * (x1e + x1f);
dst[15*dst_stridea] = 0.25f * (x31 + x32);
dst += dst_strideb;
src += src_strideb;
}
}
static void av_always_inline idct16_1d(float *dst, const float *src,
int dst_stridea, int dst_strideb,
int src_stridea, int src_strideb,
int add)
{
int i;
for (i = 0; i < 16; i++) {
const float x00 = 1.4142135623731f *src[ 0*src_stridea];
const float x01 = 1.40740373752638f *src[ 1*src_stridea] + 0.138617169199091f*src[15*src_stridea];
const float x02 = 1.38703984532215f *src[ 2*src_stridea] + 0.275899379282943f*src[14*src_stridea];
const float x03 = 1.35331800117435f *src[ 3*src_stridea] + 0.410524527522357f*src[13*src_stridea];
const float x04 = 1.30656296487638f *src[ 4*src_stridea] + 0.541196100146197f*src[12*src_stridea];
const float x05 = 1.24722501298667f *src[ 5*src_stridea] + 0.666655658477747f*src[11*src_stridea];
const float x06 = 1.17587560241936f *src[ 6*src_stridea] + 0.785694958387102f*src[10*src_stridea];
const float x07 = 1.09320186700176f *src[ 7*src_stridea] + 0.897167586342636f*src[ 9*src_stridea];
const float x08 = 1.4142135623731f *src[ 8*src_stridea];
const float x09 = -0.897167586342636f*src[ 7*src_stridea] + 1.09320186700176f*src[ 9*src_stridea];
const float x0a = 0.785694958387102f*src[ 6*src_stridea] - 1.17587560241936f*src[10*src_stridea];
const float x0b = -0.666655658477747f*src[ 5*src_stridea] + 1.24722501298667f*src[11*src_stridea];
const float x0c = 0.541196100146197f*src[ 4*src_stridea] - 1.30656296487638f*src[12*src_stridea];
const float x0d = -0.410524527522357f*src[ 3*src_stridea] + 1.35331800117435f*src[13*src_stridea];
const float x0e = 0.275899379282943f*src[ 2*src_stridea] - 1.38703984532215f*src[14*src_stridea];
const float x0f = -0.138617169199091f*src[ 1*src_stridea] + 1.40740373752638f*src[15*src_stridea];
const float x12 = x00 + x08;
const float x13 = x01 + x07;
const float x14 = x02 + x06;
const float x15 = x03 + x05;
const float x16 = 1.4142135623731f*x04;
const float x17 = x00 - x08;
const float x18 = x01 - x07;
const float x19 = x02 - x06;
const float x1a = x03 - x05;
const float x1d = x12 + x16;
const float x1e = x13 + x15;
const float x1f = 1.4142135623731f*x14;
const float x20 = x12 - x16;
const float x21 = x13 - x15;
const float x22 = 0.25f * (x1d - x1f);
const float x23 = 0.25f * (x20 + x21);
const float x24 = 0.25f * (x20 - x21);
const float x25 = 1.4142135623731f*x17;
const float x26 = 1.30656296487638f*x18 + 0.541196100146197f*x1a;
const float x27 = 1.4142135623731f*x19;
const float x28 = -0.541196100146197f*x18 + 1.30656296487638f*x1a;
const float x29 = 0.176776695296637f * (x25 + x27) + 0.25f*x26;
const float x2a = 0.25f * (x25 - x27);
const float x2b = 0.176776695296637f * (x25 + x27) - 0.25f*x26;
const float x2c = 0.353553390593274f*x28;
const float x1b = 0.707106781186547f * (x2a - x2c);
const float x1c = 0.707106781186547f * (x2a + x2c);
const float x2d = 1.4142135623731f*x0c;
const float x2e = x0b + x0d;
const float x2f = x0a + x0e;
const float x30 = x09 + x0f;
const float x31 = x09 - x0f;
const float x32 = x0a - x0e;
const float x33 = x0b - x0d;
const float x37 = 1.4142135623731f*x2d;
const float x38 = 1.30656296487638f*x2e + 0.541196100146197f*x30;
const float x39 = 1.4142135623731f*x2f;
const float x3a = -0.541196100146197f*x2e + 1.30656296487638f*x30;
const float x3b = 0.176776695296637f * (x37 + x39) + 0.25f*x38;
const float x3c = 0.25f * (x37 - x39);
const float x3d = 0.176776695296637f * (x37 + x39) - 0.25f*x38;
const float x3e = 0.353553390593274f*x3a;
const float x34 = 0.707106781186547f * (x3c - x3e);
const float x35 = 0.707106781186547f * (x3c + x3e);
const float x3f = 1.4142135623731f*x32;
const float x40 = x31 + x33;
const float x41 = x31 - x33;
const float x42 = 0.25f * (x3f + x40);
const float x43 = 0.25f * (x3f - x40);
const float x44 = 0.353553390593274f*x41;
dst[ 0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) + 0.25f*x1e;
dst[ 1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x29 + x3d);
dst[ 2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x29 - x3d);
dst[ 3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x23 - x43);
dst[ 4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x23 + x43);
dst[ 5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x1b - x35);
dst[ 6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x1b + x35);
dst[ 7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.707106781186547f * (x22 + x44);
dst[ 8*dst_stridea] = (add ? dst[ 8*dst_stridea] : 0) + 0.707106781186547f * (x22 - x44);
dst[ 9*dst_stridea] = (add ? dst[ 9*dst_stridea] : 0) + 0.707106781186547f * (x1c + x34);
dst[10*dst_stridea] = (add ? dst[10*dst_stridea] : 0) + 0.707106781186547f * (x1c - x34);
dst[11*dst_stridea] = (add ? dst[11*dst_stridea] : 0) + 0.707106781186547f * (x24 + x42);
dst[12*dst_stridea] = (add ? dst[12*dst_stridea] : 0) + 0.707106781186547f * (x24 - x42);
dst[13*dst_stridea] = (add ? dst[13*dst_stridea] : 0) + 0.707106781186547f * (x2b - x3b);
dst[14*dst_stridea] = (add ? dst[14*dst_stridea] : 0) + 0.707106781186547f * (x2b + x3b);
dst[15*dst_stridea] = (add ? dst[15*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) - 0.25f*x1e;
dst += dst_strideb;
src += src_strideb;
}
}
#define DEF_FILTER_FREQ_FUNCS(bsize) \
static av_always_inline void filter_freq_##bsize(const float *src, int src_linesize, \
float *dst, int dst_linesize, \
AVExpr *expr, double *var_values, \
int sigma_th) \
{ \
unsigned i; \
DECLARE_ALIGNED(32, float, tmp_block1)[bsize * bsize]; \
DECLARE_ALIGNED(32, float, tmp_block2)[bsize * bsize]; \
\
/* forward DCT */ \
fdct##bsize##_1d(tmp_block1, src, 1, bsize, 1, src_linesize); \
fdct##bsize##_1d(tmp_block2, tmp_block1, bsize, 1, bsize, 1); \
\
for (i = 0; i < bsize*bsize; i++) { \
float *b = &tmp_block2[i]; \
/* frequency filtering */ \
if (expr) { \
var_values[VAR_C] = fabsf(*b); \
*b *= av_expr_eval(expr, var_values, NULL); \
} else { \
if (fabsf(*b) < sigma_th) \
*b = 0; \
} \
} \
\
/* inverse DCT */ \
idct##bsize##_1d(tmp_block1, tmp_block2, 1, bsize, 1, bsize, 0); \
idct##bsize##_1d(dst, tmp_block1, dst_linesize, 1, bsize, 1, 1); \
} \
\
static void filter_freq_sigma_##bsize(DCTdnoizContext *s, \
const float *src, int src_linesize, \
float *dst, int dst_linesize, int thread_id) \
{ \
filter_freq_##bsize(src, src_linesize, dst, dst_linesize, NULL, NULL, s->th); \
} \
\
static void filter_freq_expr_##bsize(DCTdnoizContext *s, \
const float *src, int src_linesize, \
float *dst, int dst_linesize, int thread_id) \
{ \
filter_freq_##bsize(src, src_linesize, dst, dst_linesize, \
s->expr[thread_id], s->var_values[thread_id], 0); \
}
DEF_FILTER_FREQ_FUNCS(8)
DEF_FILTER_FREQ_FUNCS(16)
#define DCT3X3_0_0 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_0_1 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_0_2 0.5773502691896258f /* 1/sqrt(3) */
#define DCT3X3_1_0 0.7071067811865475f /* 1/sqrt(2) */
#define DCT3X3_1_2 -0.7071067811865475f /* -1/sqrt(2) */
#define DCT3X3_2_0 0.4082482904638631f /* 1/sqrt(6) */
#define DCT3X3_2_1 -0.8164965809277261f /* -2/sqrt(6) */
#define DCT3X3_2_2 0.4082482904638631f /* 1/sqrt(6) */
static av_always_inline void color_decorrelation(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h,
int r, int g, int b)
{
int x, y;
float *dstp_r = dst[0];
float *dstp_g = dst[1];
float *dstp_b = dst[2];
const uint8_t *srcp = src[0];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = srcp[r] * DCT3X3_0_0 + srcp[g] * DCT3X3_0_1 + srcp[b] * DCT3X3_0_2;
dstp_g[x] = srcp[r] * DCT3X3_1_0 + srcp[b] * DCT3X3_1_2;
dstp_b[x] = srcp[r] * DCT3X3_2_0 + srcp[g] * DCT3X3_2_1 + srcp[b] * DCT3X3_2_2;
srcp += 3;
}
srcp += src_linesize - w * 3;
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
}
}
static av_always_inline void color_correlation(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h,
int r, int g, int b)
{
int x, y;
const float *src_r = src[0];
const float *src_g = src[1];
const float *src_b = src[2];
uint8_t *dstp = dst[0];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp[r] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
dstp[g] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
dstp[b] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
dstp += 3;
}
dstp += dst_linesize - w * 3;
src_r += src_linesize;
src_g += src_linesize;
src_b += src_linesize;
}
}
#define DECLARE_COLOR_FUNCS(name, r, g, b) \
static void color_decorrelation_##name(float **dst, int dst_linesize, \
const uint8_t **src, int src_linesize, \
int w, int h) \
{ \
color_decorrelation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
} \
\
static void color_correlation_##name(uint8_t **dst, int dst_linesize, \
float **src, int src_linesize, \
int w, int h) \
{ \
color_correlation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
}
DECLARE_COLOR_FUNCS(rgb, 0, 1, 2)
DECLARE_COLOR_FUNCS(bgr, 2, 1, 0)
static av_always_inline void color_decorrelation_gbrp(float **dst, int dst_linesize,
const uint8_t **src, int src_linesize,
int w, int h)
{
int x, y;
float *dstp_r = dst[0];
float *dstp_g = dst[1];
float *dstp_b = dst[2];
const uint8_t *srcp_r = src[2];
const uint8_t *srcp_g = src[0];
const uint8_t *srcp_b = src[1];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = srcp_r[x] * DCT3X3_0_0 + srcp_g[x] * DCT3X3_0_1 + srcp_b[x] * DCT3X3_0_2;
dstp_g[x] = srcp_r[x] * DCT3X3_1_0 + srcp_b[x] * DCT3X3_1_2;
dstp_b[x] = srcp_r[x] * DCT3X3_2_0 + srcp_g[x] * DCT3X3_2_1 + srcp_b[x] * DCT3X3_2_2;
}
srcp_r += src_linesize;
srcp_g += src_linesize;
srcp_b += src_linesize;
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
}
}
static av_always_inline void color_correlation_gbrp(uint8_t **dst, int dst_linesize,
float **src, int src_linesize,
int w, int h)
{
int x, y;
const float *src_r = src[0];
const float *src_g = src[1];
const float *src_b = src[2];
uint8_t *dstp_r = dst[2];
uint8_t *dstp_g = dst[0];
uint8_t *dstp_b = dst[1];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
dstp_r[x] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
dstp_g[x] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
dstp_b[x] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
}
dstp_r += dst_linesize;
dstp_g += dst_linesize;
dstp_b += dst_linesize;
src_r += src_linesize;
src_g += src_linesize;
src_b += src_linesize;
}
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
DCTdnoizContext *s = ctx->priv;
int i, x, y, bx, by, linesize, *iweights, max_slice_h, slice_h;
const int bsize = 1 << s->n;
switch (inlink->format) {
case AV_PIX_FMT_BGR24:
s->color_decorrelation = color_decorrelation_bgr;
s->color_correlation = color_correlation_bgr;
break;
case AV_PIX_FMT_RGB24:
s->color_decorrelation = color_decorrelation_rgb;
s->color_correlation = color_correlation_rgb;
break;
case AV_PIX_FMT_GBRP:
s->color_decorrelation = color_decorrelation_gbrp;
s->color_correlation = color_correlation_gbrp;
break;
default:
av_assert0(0);
}
s->pr_width = inlink->w - (inlink->w - bsize) % s->step;
s->pr_height = inlink->h - (inlink->h - bsize) % s->step;
if (s->pr_width != inlink->w)
av_log(ctx, AV_LOG_WARNING, "The last %d horizontal pixels won't be denoised\n",
inlink->w - s->pr_width);
if (s->pr_height != inlink->h)
av_log(ctx, AV_LOG_WARNING, "The last %d vertical pixels won't be denoised\n",
inlink->h - s->pr_height);
max_slice_h = s->pr_height / ((s->bsize - 1) * 2);
if (max_slice_h == 0)
return AVERROR(EINVAL);
s->nb_threads = FFMIN3(MAX_THREADS, ff_filter_get_nb_threads(ctx), max_slice_h);
av_log(ctx, AV_LOG_DEBUG, "threads: [max=%d hmax=%d user=%d] => %d\n",
MAX_THREADS, max_slice_h, ff_filter_get_nb_threads(ctx), s->nb_threads);
s->p_linesize = linesize = FFALIGN(s->pr_width, 32);
for (i = 0; i < 2; i++) {
s->cbuf[i][0] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][0]));
s->cbuf[i][1] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][1]));
s->cbuf[i][2] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][2]));
if (!s->cbuf[i][0] || !s->cbuf[i][1] || !s->cbuf[i][2])
return AVERROR(ENOMEM);
}
/* eval expressions are probably not thread safe when the eval internal
* state can be changed (typically through load & store operations) */
if (s->expr_str) {
for (i = 0; i < s->nb_threads; i++) {
int ret = av_expr_parse(&s->expr[i], s->expr_str, var_names,
NULL, NULL, NULL, NULL, 0, ctx);
if (ret < 0)
return ret;
}
}
/* each slice will need to (pre & re)process the top and bottom block of
* the previous one in in addition to its processing area. This is because
* each pixel is averaged by all the surrounding blocks */
slice_h = (int)ceilf(s->pr_height / (float)s->nb_threads) + (s->bsize - 1) * 2;
for (i = 0; i < s->nb_threads; i++) {
s->slices[i] = av_malloc_array(linesize, slice_h * sizeof(*s->slices[i]));
if (!s->slices[i])
return AVERROR(ENOMEM);
}
s->weights = av_malloc(s->pr_height * linesize * sizeof(*s->weights));
if (!s->weights)
return AVERROR(ENOMEM);
iweights = av_calloc(s->pr_height, linesize * sizeof(*iweights));
if (!iweights)
return AVERROR(ENOMEM);
for (y = 0; y < s->pr_height - bsize + 1; y += s->step)
for (x = 0; x < s->pr_width - bsize + 1; x += s->step)
for (by = 0; by < bsize; by++)
for (bx = 0; bx < bsize; bx++)
iweights[(y + by)*linesize + x + bx]++;
for (y = 0; y < s->pr_height; y++)
for (x = 0; x < s->pr_width; x++)
s->weights[y*linesize + x] = 1. / iweights[y*linesize + x];
av_free(iweights);
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
DCTdnoizContext *s = ctx->priv;
s->bsize = 1 << s->n;
if (s->overlap == -1)
s->overlap = s->bsize - 1;
if (s->overlap > s->bsize - 1) {
av_log(s, AV_LOG_ERROR, "Overlap value can not except %d "
"with a block size of %dx%d\n",
s->bsize - 1, s->bsize, s->bsize);
return AVERROR(EINVAL);
}
if (s->expr_str) {
switch (s->n) {
case 3: s->filter_freq_func = filter_freq_expr_8; break;
case 4: s->filter_freq_func = filter_freq_expr_16; break;
default: av_assert0(0);
}
} else {
switch (s->n) {
case 3: s->filter_freq_func = filter_freq_sigma_8; break;
case 4: s->filter_freq_func = filter_freq_sigma_16; break;
default: av_assert0(0);
}
}
s->th = s->sigma * 3.;
s->step = s->bsize - s->overlap;
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_BGR24, AV_PIX_FMT_RGB24,
AV_PIX_FMT_GBRP,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static int filter_slice(AVFilterContext *ctx,
void *arg, int jobnr, int nb_jobs)
{
int x, y;
DCTdnoizContext *s = ctx->priv;
const ThreadData *td = arg;
const int w = s->pr_width;
const int h = s->pr_height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const int slice_start_ctx = FFMAX(slice_start - s->bsize + 1, 0);
const int slice_end_ctx = FFMIN(slice_end, h - s->bsize + 1);
const int slice_h = slice_end_ctx - slice_start_ctx;
const int src_linesize = s->p_linesize;
const int dst_linesize = s->p_linesize;
const int slice_linesize = s->p_linesize;
float *dst;
const float *src = td->src + slice_start_ctx * src_linesize;
const float *weights = s->weights + slice_start * dst_linesize;
float *slice = s->slices[jobnr];
// reset block sums
memset(slice, 0, (slice_h + s->bsize - 1) * dst_linesize * sizeof(*slice));
// block dct sums
for (y = 0; y < slice_h; y += s->step) {
for (x = 0; x < w - s->bsize + 1; x += s->step)
s->filter_freq_func(s, src + x, src_linesize,
slice + x, slice_linesize,
jobnr);
src += s->step * src_linesize;
slice += s->step * slice_linesize;
}
// average blocks
slice = s->slices[jobnr] + (slice_start - slice_start_ctx) * slice_linesize;
dst = td->dst + slice_start * dst_linesize;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < w; x++)
dst[x] = slice[x] * weights[x];
slice += slice_linesize;
dst += dst_linesize;
weights += dst_linesize;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
DCTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
int direct, plane;
AVFrame *out;
if (av_frame_is_writable(in)) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
s->color_decorrelation(s->cbuf[0], s->p_linesize,
(const uint8_t **)in->data, in->linesize[0],
s->pr_width, s->pr_height);
for (plane = 0; plane < 3; plane++) {
ThreadData td = {
.src = s->cbuf[0][plane],
.dst = s->cbuf[1][plane],
};
ctx->internal->execute(ctx, filter_slice, &td, NULL, s->nb_threads);
}
s->color_correlation(out->data, out->linesize[0],
s->cbuf[1], s->p_linesize,
s->pr_width, s->pr_height);
if (!direct) {
int y;
uint8_t *dst = out->data[0];
const uint8_t *src = in->data[0];
const int dst_linesize = out->linesize[0];
const int src_linesize = in->linesize[0];
const int hpad = (inlink->w - s->pr_width) * 3;
const int vpad = (inlink->h - s->pr_height);
if (hpad) {
uint8_t *dstp = dst + s->pr_width * 3;
const uint8_t *srcp = src + s->pr_width * 3;
for (y = 0; y < s->pr_height; y++) {
memcpy(dstp, srcp, hpad);
dstp += dst_linesize;
srcp += src_linesize;
}
}
if (vpad) {
uint8_t *dstp = dst + s->pr_height * dst_linesize;
const uint8_t *srcp = src + s->pr_height * src_linesize;
for (y = 0; y < vpad; y++) {
memcpy(dstp, srcp, inlink->w * 3);
dstp += dst_linesize;
srcp += src_linesize;
}
}
av_frame_free(&in);
}
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
int i;
DCTdnoizContext *s = ctx->priv;
av_freep(&s->weights);
for (i = 0; i < 2; i++) {
av_freep(&s->cbuf[i][0]);
av_freep(&s->cbuf[i][1]);
av_freep(&s->cbuf[i][2]);
}
for (i = 0; i < s->nb_threads; i++) {
av_freep(&s->slices[i]);
av_expr_free(s->expr[i]);
}
}
static const AVFilterPad dctdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad dctdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_dctdnoiz = {
.name = "dctdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 2D DCT."),
.priv_size = sizeof(DCTdnoizContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = dctdnoiz_inputs,
.outputs = dctdnoiz_outputs,
.priv_class = &dctdnoiz_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};