shaka-packager/packager/media/base/aes_decryptor.cc

201 lines
7.4 KiB
C++
Raw Permalink Normal View History

// Copyright 2016 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include <packager/media/base/aes_decryptor.h>
#include <algorithm>
#include <absl/log/check.h>
#include <absl/log/log.h>
#include <packager/macros/crypto.h>
namespace shaka {
namespace media {
AesCbcDecryptor::AesCbcDecryptor(CbcPaddingScheme padding_scheme)
: AesCbcDecryptor(padding_scheme, kDontUseConstantIv) {}
AesCbcDecryptor::AesCbcDecryptor(CbcPaddingScheme padding_scheme,
ConstantIvFlag constant_iv_flag)
: AesCryptor(constant_iv_flag), padding_scheme_(padding_scheme) {
if (padding_scheme_ != kNoPadding) {
CHECK_EQ(constant_iv_flag, kUseConstantIv)
<< "non-constant iv (cipher block chain across calls) only makes sense "
"if the padding_scheme is kNoPadding.";
}
}
AesCbcDecryptor::~AesCbcDecryptor() {}
bool AesCbcDecryptor::InitializeWithIv(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv) {
if (!SetupCipher(key.size(), kCbcMode)) {
return false;
}
if (mbedtls_cipher_setkey(&cipher_ctx_, key.data(),
static_cast<int>(8 * key.size()),
MBEDTLS_DECRYPT) != 0) {
LOG(ERROR) << "Failed to set CBC decryption key";
return false;
}
return SetIv(iv);
}
size_t AesCbcDecryptor::RequiredOutputSize(size_t plaintext_size) {
// mbedtls requires a buffer large enough for one extra block.
return plaintext_size + AES_BLOCK_SIZE;
}
bool AesCbcDecryptor::CryptInternal(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext,
size_t* plaintext_size) {
DCHECK(plaintext_size);
// Plaintext size is the same as ciphertext size except for pkcs5 padding.
// Will update later if using pkcs5 padding. For pkcs5 padding, we still
// need at least |ciphertext_size| bytes for intermediate operation.
// mbedtls requires a buffer large enough for one extra block.
const size_t required_plaintext_size = ciphertext_size + AES_BLOCK_SIZE;
if (*plaintext_size < required_plaintext_size) {
LOG(ERROR) << "Expecting output size of at least "
<< required_plaintext_size << " bytes.";
return false;
}
*plaintext_size = required_plaintext_size - AES_BLOCK_SIZE;
// If the ciphertext size is 0, this can be a no-op decrypt, so long as the
// padding mode isn't PKCS5.
if (ciphertext_size == 0) {
if (padding_scheme_ == kPkcs5Padding) {
LOG(ERROR) << "Expected ciphertext to be at least " << AES_BLOCK_SIZE
<< " bytes with Pkcs5 padding.";
return false;
}
return true;
}
DCHECK(plaintext);
const size_t residual_block_size = ciphertext_size % AES_BLOCK_SIZE;
const size_t cbc_size = ciphertext_size - residual_block_size;
// Copy the residual block early, since mbedtls may overwrite one extra block
// of the output, and input and output may be the same buffer.
std::vector<uint8_t> residual_block(ciphertext + cbc_size,
ciphertext + ciphertext_size);
DCHECK_EQ(residual_block.size(), residual_block_size);
if (residual_block_size == 0) {
CbcDecryptBlocks(ciphertext, ciphertext_size, plaintext);
if (padding_scheme_ != kPkcs5Padding)
return true;
// Strip off PKCS5 padding bytes.
const uint8_t num_padding_bytes = plaintext[ciphertext_size - 1];
if (num_padding_bytes > AES_BLOCK_SIZE) {
LOG(ERROR) << "Padding length is too large : "
<< static_cast<int>(num_padding_bytes);
return false;
}
*plaintext_size -= num_padding_bytes;
return true;
} else if (padding_scheme_ == kNoPadding) {
CbcDecryptBlocks(ciphertext, cbc_size, plaintext);
// The residual block is not encrypted.
memcpy(plaintext + cbc_size, residual_block.data(), residual_block_size);
return true;
} else if (padding_scheme_ != kCtsPadding) {
LOG(ERROR) << "Expecting cipher text size to be multiple of "
<< AES_BLOCK_SIZE << ", got " << ciphertext_size;
return false;
}
DCHECK_EQ(padding_scheme_, kCtsPadding);
if (ciphertext_size < AES_BLOCK_SIZE) {
// Don't have a full block, leave unencrypted.
memcpy(plaintext, ciphertext, ciphertext_size);
return true;
}
// Copy the next-to-last block early, since mbedtls may overwrite one extra
// block of the output, and input and output may be the same buffer.
// NOTE: Before this point, there may not be such a block. Here, we know
// this is safe.
std::vector<uint8_t> next_to_last_block(
ciphertext + cbc_size - AES_BLOCK_SIZE, ciphertext + cbc_size);
// AES-CBC decrypt everything up to the next-to-last full block.
if (cbc_size > AES_BLOCK_SIZE) {
CbcDecryptBlocks(ciphertext, cbc_size - AES_BLOCK_SIZE, plaintext);
}
uint8_t* next_to_last_plaintext_block = plaintext + cbc_size - AES_BLOCK_SIZE;
// The next-to-last block should be decrypted first in ECB mode, which is
// effectively what you get with an IV of all zeroes.
std::vector<uint8_t> backup_iv(internal_iv_);
internal_iv_.assign(AES_BLOCK_SIZE, 0);
// mbedtls requires a buffer large enough for one extra block.
std::vector<uint8_t> stolen_bits(AES_BLOCK_SIZE * 2);
CbcDecryptBlocks(next_to_last_block.data(), AES_BLOCK_SIZE,
stolen_bits.data());
// Reconstruct the final two blocks of ciphertext.
std::vector<uint8_t> reconstructed_blocks(AES_BLOCK_SIZE * 2);
memcpy(reconstructed_blocks.data(), residual_block.data(),
residual_block_size);
memcpy(reconstructed_blocks.data() + residual_block_size,
stolen_bits.data() + residual_block_size,
AES_BLOCK_SIZE - residual_block_size);
memcpy(reconstructed_blocks.data() + AES_BLOCK_SIZE,
next_to_last_block.data(), AES_BLOCK_SIZE);
// Decrypt the last two blocks.
internal_iv_ = backup_iv;
// mbedtls requires a buffer large enough for one extra block.
std::vector<uint8_t> final_output_blocks(AES_BLOCK_SIZE * 3);
CbcDecryptBlocks(reconstructed_blocks.data(), AES_BLOCK_SIZE * 2,
final_output_blocks.data());
// Copy the final output.
memcpy(next_to_last_plaintext_block, final_output_blocks.data(),
AES_BLOCK_SIZE + residual_block_size);
return true;
}
void AesCbcDecryptor::SetIvInternal() {
internal_iv_ = iv();
internal_iv_.resize(AES_BLOCK_SIZE, 0);
}
void AesCbcDecryptor::CbcDecryptBlocks(const uint8_t* ciphertext,
size_t ciphertext_size,
uint8_t* plaintext) {
CHECK_EQ(ciphertext_size % AES_BLOCK_SIZE, 0u);
CHECK_GT(ciphertext_size, 0u);
// Copy the final block of ciphertext before decryption, since we could be
// decrypting in-place.
const uint8_t* last_block = ciphertext + ciphertext_size - AES_BLOCK_SIZE;
std::vector<uint8_t> next_iv(last_block, last_block + AES_BLOCK_SIZE);
size_t output_size = 0;
CHECK_EQ(mbedtls_cipher_crypt(&cipher_ctx_, internal_iv_.data(),
AES_BLOCK_SIZE, ciphertext, ciphertext_size,
plaintext, &output_size),
0);
DCHECK_EQ(output_size % AES_BLOCK_SIZE, 0u);
// Update the internal IV.
internal_iv_ = next_iv;
}
} // namespace media
} // namespace shaka