shaka-packager/media/base/aes_encryptor.cc

479 lines
15 KiB
C++
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "media/base/aes_encryptor.h"
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "base/logging.h"
namespace {
// Increment an 8-byte counter by 1. Return true if overflowed.
bool Increment64(uint8* counter) {
DCHECK(counter);
for (int i = 7; i >= 0; --i)
if (++counter[i] != 0)
return false;
return true;
}
// According to ISO/IEC FDIS 23001-7: CENC spec, IV should be either
// 64-bit (8-byte) or 128-bit (16-byte).
bool IsIvSizeValid(size_t iv_size) { return iv_size == 8 || iv_size == 16; }
// AES defines three key sizes: 128, 192 and 256 bits.
bool IsKeySizeValidForAes(size_t key_size) {
return key_size == 16 || key_size == 24 || key_size == 32;
}
// CENC protection scheme uses 128-bit keys in counter mode.
const uint32 kCencKeySize = 16;
} // namespace
namespace edash_packager {
namespace media {
AesCtrEncryptor::AesCtrEncryptor()
: block_offset_(0),
encrypted_counter_(AES_BLOCK_SIZE, 0),
counter_overflow_(false) {
COMPILE_ASSERT(AES_BLOCK_SIZE == kCencKeySize,
cenc_key_size_should_be_the_same_as_aes_block_size);
}
AesCtrEncryptor::~AesCtrEncryptor() {}
bool AesCtrEncryptor::InitializeWithRandomIv(const std::vector<uint8>& key,
uint8 iv_size) {
std::vector<uint8> iv(iv_size, 0);
if (RAND_bytes(&iv[0], iv_size) != 1) {
LOG(ERROR) << "RAND_bytes failed with error: "
<< ERR_error_string(ERR_get_error(), NULL);
return false;
}
return InitializeWithIv(key, iv);
}
bool AesCtrEncryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (key.size() != kCencKeySize) {
LOG(ERROR) << "Invalid key size of " << key.size() << " for CENC.";
return false;
}
if (!IsIvSizeValid(iv.size())) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
aes_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, aes_key_.get()), 0);
return SetIv(iv);
}
bool AesCtrEncryptor::Encrypt(const uint8* plaintext,
size_t plaintext_size,
uint8* ciphertext) {
DCHECK(plaintext);
DCHECK(ciphertext);
DCHECK(aes_key_);
for (size_t i = 0; i < plaintext_size; ++i) {
if (block_offset_ == 0) {
AES_encrypt(&counter_[0], &encrypted_counter_[0], aes_key_.get());
// As mentioned in ISO/IEC FDIS 23001-7: CENC spec, of the 16 byte counter
// block, bytes 8 to 15 (i.e. the least significant bytes) are used as a
// simple 64 bit unsigned integer that is incremented by one for each
// subsequent block of sample data processed and is kept in network byte
// order.
if (Increment64(&counter_[8]))
counter_overflow_ = true;
}
ciphertext[i] = plaintext[i] ^ encrypted_counter_[block_offset_];
block_offset_ = (block_offset_ + 1) % AES_BLOCK_SIZE;
}
return true;
}
void AesCtrEncryptor::UpdateIv() {
block_offset_ = 0;
// As recommended in ISO/IEC FDIS 23001-7: CENC spec, for 64-bit (8-byte)
// IV_Sizes, initialization vectors for subsequent samples can be created by
// incrementing the initialization vector of the previous sample.
// For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent
// samples should be created by adding the block count of the previous sample
// to the initialization vector of the previous sample.
if (iv_.size() == 8) {
Increment64(&iv_[0]);
counter_ = iv_;
counter_.resize(AES_BLOCK_SIZE, 0);
} else {
DCHECK_EQ(16u, iv_.size());
// Even though the block counter portion of the counter (bytes 8 to 15) is
// treated as a 64-bit number, it is recommended that the initialization
// vector is treated as a 128-bit number when calculating the next
// initialization vector from the previous one. The block counter portion
// is already incremented by number of blocks, the other 64 bits of the
// counter (bytes 0 to 7) is incremented here if the block counter portion
// has overflowed.
if (counter_overflow_)
Increment64(&counter_[0]);
iv_ = counter_;
}
counter_overflow_ = false;
}
bool AesCtrEncryptor::SetIv(const std::vector<uint8>& iv) {
if (!IsIvSizeValid(iv.size())) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
block_offset_ = 0;
counter_ = iv_ = iv;
counter_.resize(AES_BLOCK_SIZE, 0);
return true;
}
AesCbcPkcs5Encryptor::AesCbcPkcs5Encryptor() {}
AesCbcPkcs5Encryptor::~AesCbcPkcs5Encryptor() {}
bool AesCbcPkcs5Encryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
encrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, encrypt_key_.get()), 0);
iv_ = iv;
return true;
}
void AesCbcPkcs5Encryptor::Encrypt(const std::string& plaintext,
std::string* ciphertext) {
DCHECK(ciphertext);
DCHECK(encrypt_key_);
// Pad the input with PKCS5 padding.
const size_t num_padding_bytes =
AES_BLOCK_SIZE - (plaintext.size() % AES_BLOCK_SIZE);
std::string padded_text = plaintext;
padded_text.append(num_padding_bytes, static_cast<char>(num_padding_bytes));
ciphertext->resize(padded_text.size());
std::vector<uint8> iv(iv_);
AES_cbc_encrypt(reinterpret_cast<const uint8*>(padded_text.data()),
reinterpret_cast<uint8*>(string_as_array(ciphertext)),
padded_text.size(),
encrypt_key_.get(),
&iv[0],
AES_ENCRYPT);
}
bool AesCbcPkcs5Encryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
AesCbcPkcs5Decryptor::AesCbcPkcs5Decryptor() {}
AesCbcPkcs5Decryptor::~AesCbcPkcs5Decryptor() {}
bool AesCbcPkcs5Decryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
decrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, decrypt_key_.get()), 0);
iv_ = iv;
return true;
}
bool AesCbcPkcs5Decryptor::Decrypt(const std::string& ciphertext,
std::string* plaintext) {
if ((ciphertext.size() % AES_BLOCK_SIZE) != 0) {
LOG(ERROR) << "Expecting cipher text size to be multiple of "
<< AES_BLOCK_SIZE << ", got " << ciphertext.size();
return false;
}
DCHECK(plaintext);
DCHECK(decrypt_key_);
plaintext->resize(ciphertext.size());
AES_cbc_encrypt(reinterpret_cast<const uint8*>(ciphertext.data()),
reinterpret_cast<uint8*>(string_as_array(plaintext)),
ciphertext.size(),
decrypt_key_.get(),
&iv_[0],
AES_DECRYPT);
// Strip off PKCS5 padding bytes.
const uint8 num_padding_bytes = (*plaintext)[plaintext->size() - 1];
if (num_padding_bytes > AES_BLOCK_SIZE) {
LOG(ERROR) << "Padding length is too large : "
<< static_cast<int>(num_padding_bytes);
return false;
}
plaintext->resize(plaintext->size() - num_padding_bytes);
return true;
}
bool AesCbcPkcs5Decryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
AesCbcCtsEncryptor::AesCbcCtsEncryptor() {}
AesCbcCtsEncryptor::~AesCbcCtsEncryptor() {}
bool AesCbcCtsEncryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
encrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_encrypt_key(&key[0], key.size() * 8, encrypt_key_.get()), 0);
iv_ = iv;
return true;
}
void AesCbcCtsEncryptor::Encrypt(const uint8* plaintext,
size_t size,
uint8* ciphertext) {
DCHECK(plaintext);
DCHECK(ciphertext);
if (size < AES_BLOCK_SIZE) {
// Don't have a full block, leave unencrypted.
memcpy(ciphertext, plaintext, size);
return;
}
std::vector<uint8> iv(iv_);
size_t residual_block_size = size % AES_BLOCK_SIZE;
size_t cbc_size = size - residual_block_size;
// Encrypt everything but the residual block using CBC.
AES_cbc_encrypt(plaintext,
ciphertext,
cbc_size,
encrypt_key_.get(),
&iv[0],
AES_ENCRYPT);
if (residual_block_size == 0) {
// No residual block. No need to do ciphertext stealing.
return;
}
// Zero-pad the residual block and encrypt using CBC.
std::vector<uint8> residual_block(plaintext + size - residual_block_size,
plaintext + size);
residual_block.resize(AES_BLOCK_SIZE, 0);
AES_cbc_encrypt(&residual_block[0],
&residual_block[0],
AES_BLOCK_SIZE,
encrypt_key_.get(),
&iv[0],
AES_ENCRYPT);
// Replace the last full block with the zero-padded, encrypted residual block,
// and replace the residual block with the equivalent portion of the last full
// encrypted block. It may appear that some encrypted bits of the last full
// block are lost, but they are not, as they were used as the IV when
// encrypting the zero-padded residual block.
uint8* residual_ciphertext_block = ciphertext + size - residual_block_size;
memcpy(residual_ciphertext_block,
residual_ciphertext_block - AES_BLOCK_SIZE,
residual_block_size);
memcpy(residual_ciphertext_block - AES_BLOCK_SIZE,
residual_block.data(),
AES_BLOCK_SIZE);
}
void AesCbcCtsEncryptor::Encrypt(const std::vector<uint8>& plaintext,
std::vector<uint8>* ciphertext) {
DCHECK(ciphertext);
ciphertext->resize(plaintext.size(), 0);
if (plaintext.empty())
return;
return Encrypt(plaintext.data(), plaintext.size(), &(*ciphertext)[0]);
}
bool AesCbcCtsEncryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
AesCbcCtsDecryptor::AesCbcCtsDecryptor() {}
AesCbcCtsDecryptor::~AesCbcCtsDecryptor() {}
bool AesCbcCtsDecryptor::InitializeWithIv(const std::vector<uint8>& key,
const std::vector<uint8>& iv) {
if (!IsKeySizeValidForAes(key.size())) {
LOG(ERROR) << "Invalid AES key size: " << key.size();
return false;
}
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
decrypt_key_.reset(new AES_KEY());
CHECK_EQ(AES_set_decrypt_key(&key[0], key.size() * 8, decrypt_key_.get()), 0);
iv_ = iv;
return true;
}
void AesCbcCtsDecryptor::Decrypt(const uint8* ciphertext,
size_t size,
uint8* plaintext) {
DCHECK(ciphertext);
DCHECK(plaintext);
if (size < AES_BLOCK_SIZE) {
// Don't have a full block, leave unencrypted.
memcpy(plaintext, ciphertext, size);
return;
}
std::vector<uint8> iv(iv_);
size_t residual_block_size = size % AES_BLOCK_SIZE;
if (residual_block_size == 0) {
// No residual block. No need to do ciphertext stealing.
AES_cbc_encrypt(ciphertext,
plaintext,
size,
decrypt_key_.get(),
&iv[0],
AES_DECRYPT);
return;
}
// AES-CBC decrypt everything up to the next-to-last full block.
size_t cbc_size = size - residual_block_size;
if (cbc_size > AES_BLOCK_SIZE) {
AES_cbc_encrypt(ciphertext,
plaintext,
cbc_size - AES_BLOCK_SIZE,
decrypt_key_.get(),
&iv[0],
AES_DECRYPT);
}
// Determine what the last IV should be so that we can "skip ahead" in the
// CBC decryption.
std::vector<uint8> last_iv(ciphertext + size - residual_block_size,
ciphertext + size);
last_iv.resize(AES_BLOCK_SIZE, 0);
// Decrypt the next-to-last block using the IV determined above. This decrypts
// the residual block bits.
AES_cbc_encrypt(ciphertext + size - residual_block_size - AES_BLOCK_SIZE,
plaintext + size - residual_block_size - AES_BLOCK_SIZE,
AES_BLOCK_SIZE,
decrypt_key_.get(),
&last_iv[0],
AES_DECRYPT);
// Swap back the residual block bits and the next-to-last full block.
if (plaintext == ciphertext) {
uint8* ptr1 = plaintext + size - residual_block_size;
uint8* ptr2 = plaintext + size - residual_block_size - AES_BLOCK_SIZE;
for (size_t i = 0; i < residual_block_size; ++i) {
uint8 temp = *ptr1;
*ptr1 = *ptr2;
*ptr2 = temp;
++ptr1;
++ptr2;
}
} else {
uint8* residual_plaintext_block = plaintext + size - residual_block_size;
memcpy(residual_plaintext_block,
residual_plaintext_block - AES_BLOCK_SIZE,
residual_block_size);
memcpy(residual_plaintext_block - AES_BLOCK_SIZE,
ciphertext + size - residual_block_size,
residual_block_size);
}
// Decrypt the last full block.
AES_cbc_encrypt(plaintext + size - residual_block_size - AES_BLOCK_SIZE,
plaintext + size - residual_block_size - AES_BLOCK_SIZE,
AES_BLOCK_SIZE,
decrypt_key_.get(),
&iv[0],
AES_DECRYPT);
}
void AesCbcCtsDecryptor::Decrypt(const std::vector<uint8>& ciphertext,
std::vector<uint8>* plaintext) {
DCHECK(plaintext);
plaintext->resize(ciphertext.size(), 0);
if (ciphertext.empty())
return;
return Decrypt(ciphertext.data(), ciphertext.size(), &(*plaintext)[0]);
}
bool AesCbcCtsDecryptor::SetIv(const std::vector<uint8>& iv) {
if (iv.size() != AES_BLOCK_SIZE) {
LOG(ERROR) << "Invalid IV size: " << iv.size();
return false;
}
iv_ = iv;
return true;
}
} // namespace media
} // namespace edash_packager