shaka-packager/packager/media/formats/mp4/segmenter.cc

480 lines
17 KiB
C++
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/media/formats/mp4/segmenter.h"
#include <algorithm>
#include "packager/base/logging.h"
#include "packager/media/base/aes_cryptor.h"
#include "packager/media/base/buffer_writer.h"
#include "packager/media/base/key_source.h"
#include "packager/media/base/media_sample.h"
#include "packager/media/base/muxer_options.h"
#include "packager/media/base/muxer_util.h"
#include "packager/media/base/video_stream_info.h"
#include "packager/media/event/muxer_listener.h"
#include "packager/media/event/progress_listener.h"
#include "packager/media/formats/mp4/box_definitions.h"
#include "packager/media/formats/mp4/key_rotation_fragmenter.h"
#include "packager/version/version.h"
namespace shaka {
namespace media {
namespace mp4 {
namespace {
const size_t kCencKeyIdSize = 16u;
// The version of cenc implemented here. CENC 4.
const int kCencSchemeVersion = 0x00010000;
// The default KID for key rotation is all 0s.
const uint8_t kKeyRotationDefaultKeyId[] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
// Defines protection pattern for pattern-based encryption.
struct ProtectionPattern {
uint8_t crypt_byte_block;
uint8_t skip_byte_block;
};
static_assert(arraysize(kKeyRotationDefaultKeyId) == kCencKeyIdSize,
"cenc_key_id_must_be_size_16");
uint64_t Rescale(uint64_t time_in_old_scale,
uint32_t old_scale,
uint32_t new_scale) {
return static_cast<double>(time_in_old_scale) / old_scale * new_scale;
}
ProtectionPattern GetProtectionPattern(FourCC protection_scheme,
TrackType track_type) {
ProtectionPattern pattern;
if (protection_scheme != FOURCC_cbcs && protection_scheme != FOURCC_cens) {
// Not using pattern encryption.
pattern.crypt_byte_block = 0u;
pattern.skip_byte_block = 0u;
} else if (track_type != kVideo) {
// Tracks other than video are protected using whole-block full-sample
// encryption, which is essentially a pattern of 1:0. Note that this may not
// be the same as the non-pattern based encryption counterparts, e.g. in
// 'cens' for full sample encryption, the whole sample is encrypted up to
// the last 16-byte boundary, see 23001-7:2016(E) 9.7; while in 'cenc' for
// full sample encryption, the last partial 16-byte block is also encrypted,
// see 23001-7:2016(E) 9.4.2. Another difference is the use of constant iv.
pattern.crypt_byte_block = 1u;
pattern.skip_byte_block = 0u;
} else {
// Use 1:9 pattern for video.
const uint8_t kCryptByteBlock = 1u;
const uint8_t kSkipByteBlock = 9u;
pattern.crypt_byte_block = kCryptByteBlock;
pattern.skip_byte_block = kSkipByteBlock;
}
return pattern;
}
void GenerateSinf(const EncryptionKey& encryption_key,
FourCC old_type,
FourCC protection_scheme,
ProtectionPattern pattern,
ProtectionSchemeInfo* sinf) {
sinf->format.format = old_type;
DCHECK_NE(protection_scheme, FOURCC_NULL);
sinf->type.type = protection_scheme;
sinf->type.version = kCencSchemeVersion;
auto& track_encryption = sinf->info.track_encryption;
track_encryption.default_is_protected = 1;
DCHECK(!encryption_key.iv.empty());
if (protection_scheme == FOURCC_cbcs) {
// ISO/IEC 23001-7:2016 10.4.1
// For 'cbcs' scheme, Constant IVs SHALL be used.
track_encryption.default_per_sample_iv_size = 0;
track_encryption.default_constant_iv = encryption_key.iv;
} else {
track_encryption.default_per_sample_iv_size =
static_cast<uint8_t>(encryption_key.iv.size());
}
track_encryption.default_crypt_byte_block = pattern.crypt_byte_block;
track_encryption.default_skip_byte_block = pattern.skip_byte_block;
track_encryption.default_kid = encryption_key.key_id;
}
void GenerateEncryptedSampleEntry(const EncryptionKey& encryption_key,
double clear_lead_in_seconds,
FourCC protection_scheme,
ProtectionPattern pattern,
SampleDescription* description) {
DCHECK(description);
if (description->type == kVideo) {
DCHECK_EQ(1u, description->video_entries.size());
// Add a second entry for clear content if needed.
if (clear_lead_in_seconds > 0)
description->video_entries.push_back(description->video_entries[0]);
// Convert the first entry to an encrypted entry.
VideoSampleEntry& entry = description->video_entries[0];
GenerateSinf(encryption_key, entry.format, protection_scheme, pattern,
&entry.sinf);
entry.format = FOURCC_encv;
} else {
DCHECK_EQ(kAudio, description->type);
DCHECK_EQ(1u, description->audio_entries.size());
// Add a second entry for clear content if needed.
if (clear_lead_in_seconds > 0)
description->audio_entries.push_back(description->audio_entries[0]);
// Convert the first entry to an encrypted entry.
AudioSampleEntry& entry = description->audio_entries[0];
GenerateSinf(encryption_key, entry.format, protection_scheme, pattern,
&entry.sinf);
entry.format = FOURCC_enca;
}
}
} // namespace
Segmenter::Segmenter(const MuxerOptions& options,
std::unique_ptr<FileType> ftyp,
std::unique_ptr<Movie> moov)
: options_(options),
ftyp_(std::move(ftyp)),
moov_(std::move(moov)),
moof_(new MovieFragment()),
fragment_buffer_(new BufferWriter()),
sidx_(new SegmentIndex()),
muxer_listener_(NULL),
progress_listener_(NULL),
progress_target_(0),
accumulated_progress_(0),
sample_duration_(0u) {}
Segmenter::~Segmenter() {}
Status Segmenter::Initialize(
const std::vector<std::shared_ptr<StreamInfo>>& streams,
MuxerListener* muxer_listener,
ProgressListener* progress_listener,
KeySource* encryption_key_source,
uint32_t max_sd_pixels,
uint32_t max_hd_pixels,
uint32_t max_uhd1_pixels,
double clear_lead_in_seconds,
double crypto_period_duration_in_seconds,
FourCC protection_scheme) {
DCHECK_LT(0u, streams.size());
muxer_listener_ = muxer_listener;
progress_listener_ = progress_listener;
moof_->header.sequence_number = 0;
moof_->tracks.resize(streams.size());
segment_durations_.resize(streams.size());
fragmenters_.resize(streams.size());
const bool key_rotation_enabled = crypto_period_duration_in_seconds != 0;
const bool kInitialEncryptionInfo = true;
for (uint32_t i = 0; i < streams.size(); ++i) {
moof_->tracks[i].header.track_id = i + 1;
if (streams[i]->stream_type() == kStreamVideo) {
// Use the first video stream as the reference stream (which is 1-based).
if (sidx_->reference_id == 0)
sidx_->reference_id = i + 1;
}
if (!encryption_key_source) {
fragmenters_[i].reset(new Fragmenter(streams[i], &moof_->tracks[i]));
continue;
}
KeySource::TrackType track_type = GetTrackTypeForEncryption(
*streams[i], max_sd_pixels, max_hd_pixels, max_uhd1_pixels);
SampleDescription& description =
moov_->tracks[i].media.information.sample_table.description;
ProtectionPattern pattern =
GetProtectionPattern(protection_scheme, description.type);
if (key_rotation_enabled) {
// Fill encrypted sample entry with default key.
EncryptionKey encryption_key;
encryption_key.key_id.assign(
kKeyRotationDefaultKeyId,
kKeyRotationDefaultKeyId + arraysize(kKeyRotationDefaultKeyId));
if (!AesCryptor::GenerateRandomIv(protection_scheme,
&encryption_key.iv)) {
return Status(error::INTERNAL_ERROR, "Failed to generate random iv.");
}
GenerateEncryptedSampleEntry(encryption_key, clear_lead_in_seconds,
protection_scheme, pattern, &description);
if (muxer_listener_) {
muxer_listener_->OnEncryptionInfoReady(
kInitialEncryptionInfo, protection_scheme, encryption_key.key_id,
encryption_key.iv, encryption_key.key_system_info);
}
fragmenters_[i].reset(new KeyRotationFragmenter(
moof_.get(), streams[i], &moof_->tracks[i], encryption_key_source,
track_type,
crypto_period_duration_in_seconds * streams[i]->time_scale(),
clear_lead_in_seconds * streams[i]->time_scale(), protection_scheme,
pattern.crypt_byte_block, pattern.skip_byte_block, muxer_listener_));
continue;
}
std::unique_ptr<EncryptionKey> encryption_key(new EncryptionKey());
Status status =
encryption_key_source->GetKey(track_type, encryption_key.get());
if (!status.ok())
return status;
if (encryption_key->iv.empty()) {
if (!AesCryptor::GenerateRandomIv(protection_scheme,
&encryption_key->iv)) {
return Status(error::INTERNAL_ERROR, "Failed to generate random iv.");
}
}
GenerateEncryptedSampleEntry(*encryption_key, clear_lead_in_seconds,
protection_scheme, pattern, &description);
if (moov_->pssh.empty()) {
moov_->pssh.resize(encryption_key->key_system_info.size());
for (size_t i = 0; i < encryption_key->key_system_info.size(); i++) {
moov_->pssh[i].raw_box = encryption_key->key_system_info[i].CreateBox();
}
if (muxer_listener_) {
muxer_listener_->OnEncryptionInfoReady(
kInitialEncryptionInfo, protection_scheme, encryption_key->key_id,
encryption_key->iv, encryption_key->key_system_info);
}
}
fragmenters_[i].reset(new EncryptingFragmenter(
streams[i], &moof_->tracks[i], std::move(encryption_key),
clear_lead_in_seconds * streams[i]->time_scale(), protection_scheme,
pattern.crypt_byte_block, pattern.skip_byte_block, muxer_listener_));
}
if (options_.mp4_use_decoding_timestamp_in_timeline) {
for (uint32_t i = 0; i < streams.size(); ++i)
fragmenters_[i]->set_use_decoding_timestamp_in_timeline(true);
}
// Choose the first stream if there is no VIDEO.
if (sidx_->reference_id == 0)
sidx_->reference_id = 1;
sidx_->timescale = streams[GetReferenceStreamId()]->time_scale();
// Use media duration as progress target.
progress_target_ = streams[GetReferenceStreamId()]->duration();
// Use the reference stream's time scale as movie time scale.
moov_->header.timescale = sidx_->timescale;
moof_->header.sequence_number = 1;
// Fill in version information.
const std::string version = GetPackagerVersion();
if (!version.empty()) {
moov_->metadata.handler.handler_type = FOURCC_ID32;
moov_->metadata.id3v2.language.code = "eng";
moov_->metadata.id3v2.private_frame.owner = GetPackagerProjectUrl();
moov_->metadata.id3v2.private_frame.value = version;
}
return DoInitialize();
}
Status Segmenter::Finalize() {
for (const std::unique_ptr<Fragmenter>& fragmenter : fragmenters_) {
Status status = FinalizeFragment(true, fragmenter.get());
if (!status.ok())
return status;
}
// Set tracks and moov durations.
// Note that the updated moov box will be written to output file for VOD case
// only.
for (std::vector<Track>::iterator track = moov_->tracks.begin();
track != moov_->tracks.end();
++track) {
track->header.duration = Rescale(track->media.header.duration,
track->media.header.timescale,
moov_->header.timescale);
if (track->header.duration > moov_->header.duration)
moov_->header.duration = track->header.duration;
}
moov_->extends.header.fragment_duration = moov_->header.duration;
return DoFinalize();
}
Status Segmenter::AddSample(const StreamInfo& stream_info,
std::shared_ptr<MediaSample> sample) {
// TODO(kqyang): Stream id should be passed in.
const uint32_t stream_id = 0;
Fragmenter* fragmenter = fragmenters_[stream_id].get();
// Set default sample duration if it has not been set yet.
if (moov_->extends.tracks[stream_id].default_sample_duration == 0) {
moov_->extends.tracks[stream_id].default_sample_duration =
sample->duration();
}
if (fragmenter->fragment_finalized()) {
return Status(error::FRAGMENT_FINALIZED,
"Current fragment is finalized already.");
}
bool finalize_fragment = false;
if (fragmenter->fragment_duration() >=
options_.fragment_duration * stream_info.time_scale()) {
if (sample->is_key_frame() || !options_.fragment_sap_aligned) {
finalize_fragment = true;
}
}
bool finalize_segment = false;
if (segment_durations_[stream_id] >=
options_.segment_duration * stream_info.time_scale()) {
if (sample->is_key_frame() || !options_.segment_sap_aligned) {
finalize_segment = true;
finalize_fragment = true;
}
}
Status status;
if (finalize_fragment) {
status = FinalizeFragment(finalize_segment, fragmenter);
if (!status.ok())
return status;
}
status = fragmenter->AddSample(sample);
if (!status.ok())
return status;
if (sample_duration_ == 0)
sample_duration_ = sample->duration();
moov_->tracks[stream_id].media.header.duration += sample->duration();
segment_durations_[stream_id] += sample->duration();
DCHECK_GE(segment_durations_[stream_id], fragmenter->fragment_duration());
return Status::OK;
}
uint32_t Segmenter::GetReferenceTimeScale() const {
return moov_->header.timescale;
}
double Segmenter::GetDuration() const {
if (moov_->header.timescale == 0) {
// Handling the case where this is not properly initialized.
return 0.0;
}
return static_cast<double>(moov_->header.duration) / moov_->header.timescale;
}
void Segmenter::UpdateProgress(uint64_t progress) {
accumulated_progress_ += progress;
if (!progress_listener_) return;
if (progress_target_ == 0) return;
// It might happen that accumulated progress exceeds progress_target due to
// computation errors, e.g. rounding error. Cap it so it never reports > 100%
// progress.
if (accumulated_progress_ >= progress_target_) {
progress_listener_->OnProgress(1.0);
} else {
progress_listener_->OnProgress(static_cast<double>(accumulated_progress_) /
progress_target_);
}
}
void Segmenter::SetComplete() {
if (!progress_listener_) return;
progress_listener_->OnProgress(1.0);
}
Status Segmenter::FinalizeSegment() {
Status status = DoFinalizeSegment();
// Reset segment information to initial state.
sidx_->references.clear();
std::vector<uint64_t>::iterator it = segment_durations_.begin();
for (; it != segment_durations_.end(); ++it)
*it = 0;
return status;
}
uint32_t Segmenter::GetReferenceStreamId() {
DCHECK(sidx_);
return sidx_->reference_id - 1;
}
Status Segmenter::FinalizeFragment(bool finalize_segment,
Fragmenter* fragmenter) {
fragmenter->FinalizeFragment();
// Check if all tracks are ready for fragmentation.
for (const std::unique_ptr<Fragmenter>& fragmenter : fragmenters_) {
if (!fragmenter->fragment_finalized())
return Status::OK;
}
MediaData mdat;
// Data offset relative to 'moof': moof size + mdat header size.
// The code will also update box sizes for moof_ and its child boxes.
uint64_t data_offset = moof_->ComputeSize() + mdat.HeaderSize();
// 'traf' should follow 'mfhd' moof header box.
uint64_t next_traf_position = moof_->HeaderSize() + moof_->header.box_size();
for (size_t i = 0; i < moof_->tracks.size(); ++i) {
TrackFragment& traf = moof_->tracks[i];
if (traf.auxiliary_offset.offsets.size() > 0) {
DCHECK_EQ(traf.auxiliary_offset.offsets.size(), 1u);
DCHECK(!traf.sample_encryption.sample_encryption_entries.empty());
next_traf_position += traf.box_size();
// SampleEncryption 'senc' box should be the last box in 'traf'.
// |auxiliary_offset| should point to the data of SampleEncryption.
traf.auxiliary_offset.offsets[0] =
next_traf_position - traf.sample_encryption.box_size() +
traf.sample_encryption.HeaderSize() +
sizeof(uint32_t); // for sample count field in 'senc'
}
traf.runs[0].data_offset = data_offset + mdat.data_size;
mdat.data_size += static_cast<uint32_t>(fragmenters_[i]->data()->Size());
}
// Generate segment reference.
sidx_->references.resize(sidx_->references.size() + 1);
fragmenters_[GetReferenceStreamId()]->GenerateSegmentReference(
&sidx_->references[sidx_->references.size() - 1]);
sidx_->references[sidx_->references.size() - 1].referenced_size =
data_offset + mdat.data_size;
// Write the fragment to buffer.
moof_->Write(fragment_buffer_.get());
mdat.WriteHeader(fragment_buffer_.get());
for (const std::unique_ptr<Fragmenter>& fragmenter : fragmenters_)
fragment_buffer_->AppendBuffer(*fragmenter->data());
// Increase sequence_number for next fragment.
++moof_->header.sequence_number;
if (finalize_segment)
return FinalizeSegment();
return Status::OK;
}
} // namespace mp4
} // namespace media
} // namespace shaka