shaka-packager/packager/mpd/base/representation_unittest.cc

1396 lines
50 KiB
C++
Raw Normal View History

// Copyright 2017 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "packager/mpd/base/representation.h"
#include <gflags/gflags.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <inttypes.h>
#include "packager/base/strings/stringprintf.h"
#include "packager/file/file.h"
#include "packager/file/file_closer.h"
#include "packager/mpd/base/mpd_options.h"
#include "packager/mpd/test/mpd_builder_test_helper.h"
#include "packager/mpd/test/xml_compare.h"
using ::testing::Bool;
using ::testing::Not;
using ::testing::Values;
using ::testing::WithParamInterface;
DECLARE_bool(use_legacy_vp9_codec_string);
namespace shaka {
namespace {
const uint32_t kAnyRepresentationId = 1;
class MockRepresentationStateChangeListener
: public RepresentationStateChangeListener {
public:
MockRepresentationStateChangeListener() {}
~MockRepresentationStateChangeListener() {}
MOCK_METHOD2(OnNewSegmentForRepresentation,
void(int64_t start_time, int64_t duration));
MOCK_METHOD2(OnSetFrameRateForRepresentation,
void(int32_t frame_duration, int32_t timescale));
};
} // namespace
class RepresentationTest : public ::testing::Test {
public:
// TODO(rkuroiwa): Once std::forward() is allowed by chromium style guide, use
// variadic template and std::forward() so that we don't need to copy the
// constructor signatures.
std::unique_ptr<Representation> CreateRepresentation(
const MediaInfo& media_info,
uint32_t representation_id,
std::unique_ptr<RepresentationStateChangeListener>
state_change_listener) {
return std::unique_ptr<Representation>(
new Representation(media_info, mpd_options_, representation_id,
std::move(state_change_listener)));
}
std::unique_ptr<Representation> CopyRepresentation(
const Representation& representation,
std::unique_ptr<RepresentationStateChangeListener>
state_change_listener) {
return std::unique_ptr<Representation>(
new Representation(representation, std::move(state_change_listener)));
}
std::unique_ptr<RepresentationStateChangeListener> NoListener() {
return std::unique_ptr<RepresentationStateChangeListener>();
}
protected:
MpdOptions mpd_options_;
};
// Verify that Representation::Init() works with all "required" fields of
// MedieInfo proto.
TEST_F(RepresentationTest, ValidMediaInfo) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
EXPECT_TRUE(representation->Init());
}
// Verify that if VideoInfo, AudioInfo, or TextInfo is not set, Init() fails.
TEST_F(RepresentationTest, VideoAudioTextInfoNotSet) {
const char kTestMediaInfo[] = "container_type: 1";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
EXPECT_FALSE(representation->Init());
}
// Verify that if more than one of VideoInfo, AudioInfo, or TextInfo is set,
// then Init() fails.
TEST_F(RepresentationTest, VideoAndAudioInfoSet) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"audio_info {\n"
" codec: 'mp4a.40.2'\n"
" sampling_frequency: 44100\n"
" time_scale: 1200\n"
" num_channels: 2\n"
"}\n"
"container_type: CONTAINER_MP4\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
EXPECT_FALSE(representation->Init());
}
// Verify that Representation::Init() fails if a required field is missing.
TEST_F(RepresentationTest, InvalidMediaInfo) {
// Missing width.
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
EXPECT_FALSE(representation->Init());
}
// Basic check that the fields in video info are in the XML.
TEST_F(RepresentationTest, CheckVideoInfoReflectedInXml) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" width: 1280\n"
" height: 720\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
const char kExpectedOutput[] =
"<Representation id=\"1\" bandwidth=\"0\" "
" codecs=\"avc1\" mimeType=\"video/mp4\" "
" sar=\"1:1\" width=\"1280\" height=\"720\" "
" frameRate=\"10/10\"/>";
EXPECT_THAT(representation->GetXml(), XmlNodeEqual(kExpectedOutput));
}
TEST_F(RepresentationTest, CheckVideoInfoVp8CodecInMp4) {
const char kTestMediaInfoCodecVp8[] =
"video_info {\n"
" codec: 'vp08.00.00.08.01.01.00.00'\n"
" width: 1280\n"
" height: 720\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfoCodecVp8),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(),
AttributeEqual("codecs", "vp08.00.00.08.01.01.00.00"));
}
// Check that vp8 codec string will be updated for backward compatibility
// support in webm.
TEST_F(RepresentationTest, CheckVideoInfoVp8CodecInWebm) {
const char kTestMediaInfoCodecVp8[] =
"video_info {\n"
" codec: 'vp08.00.00.08.01.01.00.00'\n"
" width: 1280\n"
" height: 720\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 3\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfoCodecVp8),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(), AttributeEqual("codecs", "vp8"));
}
TEST_F(RepresentationTest, CheckVideoInfoVp9CodecInWebm) {
const char kTestMediaInfoCodecVp9[] =
"video_info {\n"
" codec: 'vp09.00.00.08.01.01.00.00'\n"
" width: 1280\n"
" height: 720\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 3\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfoCodecVp9),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(),
AttributeEqual("codecs", "vp09.00.00.08.01.01.00.00"));
}
TEST_F(RepresentationTest, CheckVideoInfoLegacyVp9CodecInWebm) {
FLAGS_use_legacy_vp9_codec_string = true;
const char kTestMediaInfoCodecVp9[] =
"video_info {\n"
" codec: 'vp09.00.00.08.01.01.00.00'\n"
" width: 1280\n"
" height: 720\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 3\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfoCodecVp9),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(), AttributeEqual("codecs", "vp9"));
}
// Make sure RepresentationStateChangeListener::OnNewSegmentForRepresentation()
// is called.
TEST_F(RepresentationTest,
RepresentationStateChangeListenerOnNewSegmentForRepresentation) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
const int64_t kStartTime = 199238;
const int64_t kDuration = 98;
std::unique_ptr<MockRepresentationStateChangeListener> listener(
new MockRepresentationStateChangeListener());
EXPECT_CALL(*listener, OnNewSegmentForRepresentation(kStartTime, kDuration));
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfo),
kAnyRepresentationId, std::move(listener));
EXPECT_TRUE(representation->Init());
representation->AddNewSegment(kStartTime, kDuration, 10 /* any size */);
}
// Make sure
// RepresentationStateChangeListener::OnSetFrameRateForRepresentation()
// is called.
TEST_F(RepresentationTest,
RepresentationStateChangeListenerOnSetFrameRateForRepresentation) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 1000\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
const int32_t kTimeScale = 1000;
const int64_t kFrameDuration = 33;
std::unique_ptr<MockRepresentationStateChangeListener> listener(
new MockRepresentationStateChangeListener());
EXPECT_CALL(*listener,
OnSetFrameRateForRepresentation(kFrameDuration, kTimeScale));
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTestMediaInfo),
kAnyRepresentationId, std::move(listener));
EXPECT_TRUE(representation->Init());
representation->SetSampleDuration(kFrameDuration);
}
TEST_F(RepresentationTest, TtmlXmlMimeType) {
const char kTtmlXmlMediaInfo[] =
"text_info {\n"
" codec: 'ttml'\n"
"}\n"
"container_type: CONTAINER_TEXT\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTtmlXmlMediaInfo),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(),
AttributeEqual("mimeType", "application/ttml+xml"));
}
TEST_F(RepresentationTest, TtmlMp4MimeType) {
const char kTtmlMp4MediaInfo[] =
"text_info {\n"
" codec: 'ttml'\n"
"}\n"
"container_type: CONTAINER_MP4\n";
auto representation =
CreateRepresentation(ConvertToMediaInfo(kTtmlMp4MediaInfo),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(),
AttributeEqual("mimeType", "application/mp4"));
}
TEST_F(RepresentationTest, WebVttMimeType) {
const char kWebVttMediaInfo[] =
"text_info {\n"
" codec: 'wvtt'\n"
"}\n"
"container_type: CONTAINER_TEXT\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kWebVttMediaInfo), kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(), AttributeEqual("mimeType", "text/vtt"));
}
// Verify that Suppress*() methods work.
TEST_F(RepresentationTest, SuppressRepresentationAttributes) {
const char kTestMediaInfo[] =
"video_info {\n"
" codec: 'avc1'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 10\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"container_type: 1\n";
auto representation = CreateRepresentation(
ConvertToMediaInfo(kTestMediaInfo), kAnyRepresentationId, NoListener());
representation->SuppressOnce(Representation::kSuppressWidth);
auto no_width = representation->GetXml();
EXPECT_THAT(no_width, Not(AttributeSet("width")));
EXPECT_THAT(no_width, AttributeEqual("height", "480"));
EXPECT_THAT(no_width, AttributeEqual("frameRate", "10/10"));
representation->SuppressOnce(Representation::kSuppressHeight);
auto no_height = representation->GetXml();
EXPECT_THAT(no_height, Not(AttributeSet("height")));
EXPECT_THAT(no_height, AttributeEqual("width", "720"));
EXPECT_THAT(no_height, AttributeEqual("frameRate", "10/10"));
representation->SuppressOnce(Representation::kSuppressFrameRate);
auto no_frame_rate = representation->GetXml();
EXPECT_THAT(no_frame_rate, Not(AttributeSet("frameRate")));
EXPECT_THAT(no_frame_rate, AttributeEqual("width", "720"));
EXPECT_THAT(no_frame_rate, AttributeEqual("height", "480"));
}
TEST_F(RepresentationTest, CheckRepresentationId) {
const MediaInfo video_media_info = GetTestMediaInfo(kFileNameVideoMediaInfo1);
const uint32_t kRepresentationId = 1;
auto representation =
CreateRepresentation(video_media_info, kRepresentationId, NoListener());
EXPECT_TRUE(representation->Init());
EXPECT_THAT(representation->GetXml(),
AttributeEqual("id", std::to_string(kRepresentationId)));
}
namespace {
// Any number for {AdaptationSet,Representation} ID. Required to create
// either objects. Not checked in test.
const char kSElementTemplate[] =
"<S t=\"%" PRIu64 "\" d=\"%" PRIu64 "\" r=\"%d\"/>\n";
const char kSElementTemplateWithoutR[] =
"<S t=\"%" PRIu64 "\" d=\"%" PRIu64 "\"/>\n";
const int kDefaultStartNumber = 1;
const int32_t kDefaultTimeScale = 1000;
const int64_t kScaledTargetSegmentDuration = 10;
const double kTargetSegmentDurationInSeconds =
static_cast<double>(kScaledTargetSegmentDuration) / kDefaultTimeScale;
const int32_t kSampleDuration = 2;
std::string GetDefaultMediaInfo() {
const char kMediaInfo[] =
"video_info {\n"
" codec: 'avc1.010101'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 5\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"reference_time_scale: %u\n"
"container_type: 1\n"
"init_segment_url: 'init.mp4'\n"
"segment_template_url: '$Time$.mp4'\n";
return base::StringPrintf(kMediaInfo, kDefaultTimeScale);
}
} // namespace
class SegmentTemplateTest : public RepresentationTest {
public:
void SetUp() override {
mpd_options_.mpd_type = MpdType::kDynamic;
mpd_options_.mpd_params.low_latency_dash_mode = false;
representation_ =
CreateRepresentation(ConvertToMediaInfo(GetDefaultMediaInfo()),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation_->Init());
}
void AddSegments(int64_t start_time,
int64_t duration,
uint64_t size,
int repeat) {
DCHECK(representation_);
SegmentInfo s = {start_time, duration, repeat};
segment_infos_for_expected_out_.push_back(s);
if (mpd_options_.mpd_params.low_latency_dash_mode) {
// Low latency segments do not repeat, so create 1 new segment and return.
// At this point, only the first chunk of the low latency segment has been
// written. The bandwidth will be updated once the segment is fully
// written and the segment duration and size are known.
representation_->AddNewSegment(start_time, duration, size);
return;
}
if (repeat == 0) {
expected_s_elements_ +=
base::StringPrintf(kSElementTemplateWithoutR, start_time, duration);
} else {
expected_s_elements_ +=
base::StringPrintf(kSElementTemplate, start_time, duration, repeat);
}
for (int i = 0; i < repeat + 1; ++i) {
representation_->AddNewSegment(start_time, duration, size);
start_time += duration;
bandwidth_estimator_.AddBlock(
size, static_cast<double>(duration) / kDefaultTimeScale);
}
}
void UpdateSegment(int64_t duration, uint64_t size) {
DCHECK(representation_);
DCHECK(!segment_infos_for_expected_out_.empty());
segment_infos_for_expected_out_.back().duration = duration;
representation_->UpdateCompletedSegment(duration, size);
bandwidth_estimator_.AddBlock(
size, static_cast<double>(duration) / kDefaultTimeScale);
}
protected:
std::string ExpectedXml() {
const char kOutputTemplate[] =
"<Representation id=\"1\" bandwidth=\"%" PRIu64
"\" "
" codecs=\"avc1.010101\" mimeType=\"video/mp4\" sar=\"1:1\" "
" width=\"720\" height=\"480\" frameRate=\"10/5\">\n"
" <SegmentTemplate timescale=\"1000\" "
" initialization=\"init.mp4\" media=\"$Time$.mp4\" "
" startNumber=\"1\">\n"
" <SegmentTimeline>\n"
" %s\n"
" </SegmentTimeline>\n"
" </SegmentTemplate>\n"
"</Representation>\n";
return base::StringPrintf(kOutputTemplate, bandwidth_estimator_.Max(),
expected_s_elements_.c_str());
}
std::unique_ptr<Representation> representation_;
std::list<SegmentInfo> segment_infos_for_expected_out_;
std::string expected_s_elements_;
BandwidthEstimator bandwidth_estimator_;
};
// Estimate the bandwidth given the info from AddNewSegment().
TEST_F(SegmentTemplateTest, OneSegmentNormal) {
const int64_t kStartTime = 0;
const int64_t kDuration = 10;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
expected_s_elements_ = "<S t=\"0\" d=\"10\"/>";
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
TEST_F(SegmentTemplateTest, OneSegmentLowLatency) {
const int64_t kStartTime = 0;
const int64_t kChunkDuration = 5;
const uint64_t kChunkSize = 128;
const int64_t kSegmentDuration = kChunkDuration * 1000;
const uint64_t kSegmentSize = kChunkSize * 1000;
mpd_options_.mpd_params.low_latency_dash_mode = true;
mpd_options_.mpd_params.target_segment_duration =
kSegmentDuration / representation_->GetMediaInfo().reference_time_scale();
// Set values used in LL-DASH MPD attributes
representation_->SetSampleDuration(kChunkDuration);
representation_->SetAvailabilityTimeOffset();
representation_->SetSegmentDuration();
// Register segment after the first chunk is complete
AddSegments(kStartTime, kChunkDuration, kChunkSize, 0);
// Update SegmentInfo after the segment is complete
UpdateSegment(kSegmentDuration, kSegmentSize);
const char kOutputTemplate[] =
"<Representation id=\"1\" bandwidth=\"204800\" "
" codecs=\"avc1.010101\" mimeType=\"video/mp4\" sar=\"1:1\" "
" width=\"720\" height=\"480\" frameRate=\"10/5\">\n"
" <SegmentTemplate timescale=\"1000\" "
" duration=\"5000\" availabilityTimeOffset=\"4.995\" "
" initialization=\"init.mp4\" media=\"$Time$.mp4\" "
" startNumber=\"1\"/>\n"
"</Representation>\n";
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(kOutputTemplate));
}
TEST_F(SegmentTemplateTest, RepresentationClone) {
MediaInfo media_info = ConvertToMediaInfo(GetDefaultMediaInfo());
media_info.set_segment_template_url("$Number$.mp4");
representation_ =
CreateRepresentation(media_info, kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation_->Init());
const int64_t kStartTime = 0;
const int64_t kDuration = 10;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
auto cloned_representation =
CopyRepresentation(*representation_, NoListener());
const char kExpectedXml[] =
"<Representation id=\"1\" bandwidth=\"0\" "
" codecs=\"avc1.010101\" mimeType=\"video/mp4\" sar=\"1:1\" "
" width=\"720\" height=\"480\" frameRate=\"10/5\">\n"
" <SegmentTemplate timescale=\"1000\" initialization=\"init.mp4\" "
" media=\"$Number$.mp4\" startNumber=\"2\">\n"
" </SegmentTemplate>\n"
"</Representation>\n";
EXPECT_THAT(cloned_representation->GetXml(), XmlNodeEqual(kExpectedXml));
}
TEST_F(SegmentTemplateTest, PresentationTimeOffset) {
const int64_t kStartTime = 0;
const int64_t kDuration = 10;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
const double kPresentationTimeOffsetSeconds = 2.3;
representation_->SetPresentationTimeOffset(kPresentationTimeOffsetSeconds);
const char kExpectedXml[] =
"<Representation id=\"1\" bandwidth=\"102400\" "
" codecs=\"avc1.010101\" mimeType=\"video/mp4\" sar=\"1:1\" "
" width=\"720\" height=\"480\" frameRate=\"10/5\">\n"
" <SegmentTemplate timescale=\"1000\" presentationTimeOffset=\"2300\""
" initialization=\"init.mp4\" media=\"$Time$.mp4\" startNumber=\"1\">\n"
" <SegmentTimeline>\n"
" <S t=\"0\" d=\"10\"/>\n"
" </SegmentTimeline>\n"
" </SegmentTemplate>\n"
"</Representation>\n";
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(kExpectedXml));
}
TEST_F(SegmentTemplateTest, GetStartAndEndTimestamps) {
double start_timestamp;
double end_timestamp;
// No segments.
EXPECT_FALSE(representation_->GetStartAndEndTimestamps(&start_timestamp,
&end_timestamp));
const int64_t kStartTime = 88;
const int64_t kDuration = 10;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
AddSegments(kStartTime + kDuration, kDuration, kSize, 2);
ASSERT_TRUE(representation_->GetStartAndEndTimestamps(&start_timestamp,
&end_timestamp));
EXPECT_EQ(static_cast<double>(kStartTime) / kDefaultTimeScale,
start_timestamp);
EXPECT_EQ(static_cast<double>(kStartTime + kDuration * 4) / kDefaultTimeScale,
end_timestamp);
}
TEST_F(SegmentTemplateTest, NormalRepeatedSegmentDuration) {
const uint64_t kSize = 256;
int64_t start_time = 0;
int64_t duration = 40000;
int repeat = 2;
AddSegments(start_time, duration, kSize, repeat);
start_time += duration * (repeat + 1);
duration = 54321;
repeat = 0;
AddSegments(start_time, duration, kSize, repeat);
start_time += duration * (repeat + 1);
duration = 12345;
repeat = 0;
AddSegments(start_time, duration, kSize, repeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
TEST_F(SegmentTemplateTest, RepeatedSegmentsFromNonZeroStartTime) {
const uint64_t kSize = 100000;
int64_t start_time = 0;
int64_t duration = 100000;
int repeat = 2;
AddSegments(start_time, duration, kSize, repeat);
start_time += duration * (repeat + 1);
duration = 20000;
repeat = 3;
AddSegments(start_time, duration, kSize, repeat);
start_time += duration * (repeat + 1);
duration = 32123;
repeat = 3;
AddSegments(start_time, duration, kSize, repeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
// Segments not starting from 0.
// Start time is 10. Make sure r gets set correctly.
TEST_F(SegmentTemplateTest, NonZeroStartTime) {
const int64_t kStartTime = 10;
const int64_t kDuration = 22000;
const int kSize = 123456;
const int kRepeat = 1;
AddSegments(kStartTime, kDuration, kSize, kRepeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
// There is a gap in the segments, but still valid.
TEST_F(SegmentTemplateTest, NonContiguousLiveInfo) {
const int64_t kStartTime = 10;
const int64_t kDuration = 22000;
const int kSize = 123456;
const int kRepeat = 0;
AddSegments(kStartTime, kDuration, kSize, kRepeat);
const int64_t kStartTimeOffset = 100;
AddSegments(kDuration + kStartTimeOffset, kDuration, kSize, kRepeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
// Add segments out of order. Segments that start before the previous segment
// cannot be added.
TEST_F(SegmentTemplateTest, OutOfOrder) {
const int64_t kEarlierStartTime = 0;
const int64_t kLaterStartTime = 1000;
const int64_t kDuration = 1000;
const int kSize = 123456;
const int kRepeat = 0;
AddSegments(kLaterStartTime, kDuration, kSize, kRepeat);
AddSegments(kEarlierStartTime, kDuration, kSize, kRepeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
// No segments should be overlapping.
TEST_F(SegmentTemplateTest, OverlappingSegments) {
const int64_t kEarlierStartTime = 0;
const int64_t kDuration = 1000;
const int kSize = 123456;
const int kRepeat = 0;
const int64_t kOverlappingSegmentStartTime = kDuration / 2;
CHECK_GT(kDuration, kOverlappingSegmentStartTime);
AddSegments(kEarlierStartTime, kDuration, kSize, kRepeat);
AddSegments(kOverlappingSegmentStartTime, kDuration, kSize, kRepeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
// Some segments can be overlapped due to rounding errors. As long as it falls
// in the range of rounding error defined inside MpdBuilder, the segment gets
// accepted.
TEST_F(SegmentTemplateTest, OverlappingSegmentsWithinErrorRange) {
const int64_t kEarlierStartTime = 0;
const int64_t kDuration = 1000;
const int kSize = 123456;
const int kRepeat = 0;
const int64_t kOverlappingSegmentStartTime = kDuration - 1;
CHECK_GT(kDuration, kOverlappingSegmentStartTime);
AddSegments(kEarlierStartTime, kDuration, kSize, kRepeat);
AddSegments(kOverlappingSegmentStartTime, kDuration, kSize, kRepeat);
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(ExpectedXml()));
}
class SegmentTimelineTestBase : public SegmentTemplateTest {
public:
void SetUp() override {
// The only diff with current GetDefaultMediaInfo() is that this uses
// $Number$ for segment template.
const char kMediaInfo[] =
"video_info {\n"
" codec: 'avc1.010101'\n"
" width: 720\n"
" height: 480\n"
" time_scale: 10\n"
" frame_duration: 2\n"
" pixel_width: 1\n"
" pixel_height: 1\n"
"}\n"
"reference_time_scale: %u\n"
"container_type: 1\n"
"init_segment_url: 'init.mp4'\n"
"segment_template_url: '$Number$.mp4'\n";
const std::string& number_template_media_info =
base::StringPrintf(kMediaInfo, kDefaultTimeScale);
mpd_options_.mpd_type = MpdType::kDynamic;
mpd_options_.mpd_params.target_segment_duration =
kTargetSegmentDurationInSeconds;
representation_ =
CreateRepresentation(ConvertToMediaInfo(number_template_media_info),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation_->Init());
}
std::string ExpectedXml(const std::string& expected_s_element,
int expected_start_number) {
const char kOutputTemplate[] =
"<Representation id=\"1\" bandwidth=\"%" PRIu64
"\" "
" codecs=\"avc1.010101\" mimeType=\"video/mp4\" sar=\"1:1\" "
" width=\"720\" height=\"480\" frameRate=\"10/2\">\n"
" <SegmentTemplate timescale=\"1000\" "
" initialization=\"init.mp4\" media=\"$Number$.mp4\" "
" startNumber=\"%d\">\n"
" <SegmentTimeline>\n"
" %s\n"
" </SegmentTimeline>\n"
" </SegmentTemplate>\n"
"</Representation>\n";
return base::StringPrintf(kOutputTemplate, bandwidth_estimator_.Max(),
expected_start_number,
expected_s_element.c_str());
}
};
class ApproximateSegmentTimelineTest : public SegmentTimelineTestBase,
public WithParamInterface<bool> {
public:
void SetUp() override {
allow_approximate_segment_timeline_ = GetParam();
mpd_options_.mpd_params.allow_approximate_segment_timeline =
allow_approximate_segment_timeline_;
SegmentTimelineTestBase::SetUp();
representation_->SetSampleDuration(kSampleDuration);
}
std::string ExpectedXml(const std::string& expected_s_element) {
return SegmentTimelineTestBase::ExpectedXml(expected_s_element,
kDefaultStartNumber);
}
protected:
bool allow_approximate_segment_timeline_;
};
TEST_P(ApproximateSegmentTimelineTest, SegmentDurationAdjusted) {
const int64_t kStartTime = 0;
const int64_t kDurationSmaller =
kScaledTargetSegmentDuration - kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDurationSmaller, kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
expected_s_elements = base::StringPrintf(
kSElementTemplateWithoutR, kStartTime, kScaledTargetSegmentDuration);
} else {
expected_s_elements = base::StringPrintf(kSElementTemplateWithoutR,
kStartTime, kDurationSmaller);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
TEST_P(ApproximateSegmentTimelineTest,
SegmentDurationAdjustedWithNonZeroStartTime) {
const int64_t kStartTime = 12345;
const int64_t kDurationSmaller =
kScaledTargetSegmentDuration - kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDurationSmaller, kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
expected_s_elements = base::StringPrintf(
kSElementTemplateWithoutR, kStartTime, kScaledTargetSegmentDuration);
} else {
expected_s_elements = base::StringPrintf(kSElementTemplateWithoutR,
kStartTime, kDurationSmaller);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
TEST_P(ApproximateSegmentTimelineTest, SegmentsWithSimilarDurations) {
const int64_t kStartTime = 0;
const int64_t kDurationSmaller =
kScaledTargetSegmentDuration - kSampleDuration / 2;
const int64_t kDurationLarger =
kScaledTargetSegmentDuration + kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDurationSmaller, kSize, 0);
AddSegments(kStartTime + kDurationSmaller, kDurationLarger, kSize, 0);
AddSegments(kStartTime + kDurationSmaller + kDurationLarger, kDurationSmaller,
kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
int kNumSegments = 3;
expected_s_elements =
base::StringPrintf(kSElementTemplate, kStartTime,
kScaledTargetSegmentDuration, kNumSegments - 1);
} else {
expected_s_elements =
base::StringPrintf(kSElementTemplateWithoutR, kStartTime,
kDurationSmaller) +
base::StringPrintf(kSElementTemplateWithoutR,
kStartTime + kDurationSmaller, kDurationLarger) +
base::StringPrintf(kSElementTemplateWithoutR,
kStartTime + kDurationSmaller + kDurationLarger,
kDurationSmaller);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
// We assume the actual segment duration fluctuates around target segment
// duration; if it is not the case (which should not happen with our demuxer),
// this is how the output would look like.
TEST_P(ApproximateSegmentTimelineTest, SegmentsWithSimilarDurations2) {
const int64_t kStartTime = 0;
const int64_t kDurationLarger =
kScaledTargetSegmentDuration + kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDurationLarger, kSize, 0);
AddSegments(kStartTime + kDurationLarger, kDurationLarger, kSize, 0);
AddSegments(kStartTime + 2 * kDurationLarger, kDurationLarger, kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
expected_s_elements =
"<S t=\"0\" d=\"10\" r=\"1\"/>"
"<S t=\"20\" d=\"13\"/>";
} else {
int kNumSegments = 3;
expected_s_elements = base::StringPrintf(kSElementTemplate, kStartTime,
kDurationLarger, kNumSegments - 1);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
TEST_P(ApproximateSegmentTimelineTest, FillSmallGap) {
const int64_t kStartTime = 0;
const int64_t kDuration = kScaledTargetSegmentDuration;
const int64_t kGap = kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
AddSegments(kStartTime + kDuration + kGap, kDuration, kSize, 0);
AddSegments(kStartTime + 2 * kDuration + kGap, kDuration, kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
int kNumSegments = 3;
expected_s_elements = base::StringPrintf(kSElementTemplate, kStartTime,
kDuration, kNumSegments - 1);
} else {
expected_s_elements =
base::StringPrintf(kSElementTemplateWithoutR, kStartTime, kDuration) +
base::StringPrintf(kSElementTemplate, kStartTime + kDuration + kGap,
kDuration, 1 /* repeat */);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
TEST_P(ApproximateSegmentTimelineTest, FillSmallOverlap) {
const int64_t kStartTime = 0;
const int64_t kDuration = kScaledTargetSegmentDuration;
const int64_t kOverlap = kSampleDuration / 2;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
AddSegments(kStartTime + kDuration - kOverlap, kDuration, kSize, 0);
AddSegments(kStartTime + 2 * kDuration - kOverlap, kDuration, kSize, 0);
std::string expected_s_elements;
if (allow_approximate_segment_timeline_) {
int kNumSegments = 3;
expected_s_elements = base::StringPrintf(kSElementTemplate, kStartTime,
kDuration, kNumSegments - 1);
} else {
expected_s_elements =
base::StringPrintf(kSElementTemplateWithoutR, kStartTime, kDuration) +
base::StringPrintf(kSElementTemplate, kStartTime + kDuration - kOverlap,
kDuration, 1 /* repeat */);
}
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_elements)));
}
// Check the segments are grouped correctly when sample duration is not
// available, which happens for text streams.
// See https://github.com/google/shaka-packager/issues/417 for the background.
TEST_P(ApproximateSegmentTimelineTest, NoSampleDuration) {
const char kMediaInfo[] =
"text_info {\n"
" codec: 'wvtt'\n"
"}\n"
"reference_time_scale: 1000\n"
"container_type: 1\n"
"init_segment_url: 'init.mp4'\n"
"segment_template_url: '$Number$.mp4'\n";
representation_ = CreateRepresentation(ConvertToMediaInfo(kMediaInfo),
kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation_->Init());
const int64_t kStartTime = 0;
const int64_t kDuration = kScaledTargetSegmentDuration;
const uint64_t kSize = 128;
AddSegments(kStartTime, kDuration, kSize, 0);
AddSegments(kStartTime + kDuration, kDuration, kSize, 0);
AddSegments(kStartTime + 2 * kDuration, kDuration, kSize, 0);
const char kExpectedXml[] =
"<Representation id=\"1\" bandwidth=\"102400\" codecs=\"wvtt\""
" mimeType=\"application/mp4\">\n"
" <SegmentTemplate timescale=\"1000\" initialization=\"init.mp4\" "
" media=\"$Number$.mp4\" startNumber=\"1\">\n"
" <SegmentTimeline>\n"
" <S t=\"0\" d=\"10\" r=\"2\"/>\n"
" </SegmentTimeline>\n"
" </SegmentTemplate>\n"
"</Representation>\n";
EXPECT_THAT(representation_->GetXml(), XmlNodeEqual(kExpectedXml));
}
INSTANTIATE_TEST_CASE_P(ApproximateSegmentTimelineTest,
ApproximateSegmentTimelineTest,
Bool());
class TimeShiftBufferDepthTest : public SegmentTimelineTestBase,
public WithParamInterface<int64_t> {
public:
void SetUp() override {
initial_start_time_ = GetParam();
SegmentTimelineTestBase::SetUp();
}
MpdOptions* mutable_mpd_options() { return &mpd_options_; }
protected:
int64_t initial_start_time_;
};
// All segments have the same duration and size.
TEST_P(TimeShiftBufferDepthTest, Normal) {
const int kTimeShiftBufferDepth = 10; // 10 sec.
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
// Trick to make every segment 1 second long.
const int64_t kDuration = kDefaultTimeScale;
const uint64_t kSize = 10000;
const int kRepeat = 1234;
const int kLength = kRepeat;
CHECK_EQ(kDuration / kDefaultTimeScale * kRepeat, kLength);
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
// There should only be the last 11 segments because timeshift is 10 sec and
// each segment is 1 sec and the latest segments start time is "current
// time" i.e., the latest segment does not count as part of timeshift buffer
// depth.
// Also note that S@r + 1 is the actual number of segments.
const int kExpectedRepeatsLeft = kTimeShiftBufferDepth;
const int kExpectedStartNumber = kRepeat - kExpectedRepeatsLeft + 1;
const std::string expected_s_element = base::StringPrintf(
kSElementTemplate,
initial_start_time_ + kDuration * (kRepeat - kExpectedRepeatsLeft),
kDuration, kExpectedRepeatsLeft);
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_element, kExpectedStartNumber)));
}
// TimeShiftBufferDepth is shorter than a segment. This should not discard the
// segment that can play TimeShiftBufferDepth.
// For example if TimeShiftBufferDepth = 1 min. and a 10 min segment was just
// added. Before that 9 min segment was added. The 9 min segment should not be
// removed from the MPD.
TEST_P(TimeShiftBufferDepthTest, TimeShiftBufferDepthShorterThanSegmentLength) {
const int kTimeShiftBufferDepth = 10; // 10 sec.
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
// Each duration is a second longer than timeShiftBufferDepth.
const int64_t kDuration = kDefaultTimeScale * (kTimeShiftBufferDepth + 1);
const int kSize = 10000;
const int kRepeat = 1;
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
const std::string expected_s_element = base::StringPrintf(
kSElementTemplate, initial_start_time_, kDuration, kRepeat);
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_element, kDefaultStartNumber)));
}
// More generic version the normal test.
TEST_P(TimeShiftBufferDepthTest, Generic) {
const int kTimeShiftBufferDepth = 30;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int64_t kDuration = kDefaultTimeScale;
const int kSize = 10000;
const int kRepeat = 1000;
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
const int64_t first_s_element_end_time =
initial_start_time_ + kDuration * (kRepeat + 1);
// Now add 2 kTimeShiftBufferDepth long segments.
const int kNumMoreSegments = 2;
const int kMoreSegmentsRepeat = kNumMoreSegments - 1;
const int64_t kTimeShiftBufferDepthDuration =
kDefaultTimeScale * kTimeShiftBufferDepth;
AddSegments(first_s_element_end_time, kTimeShiftBufferDepthDuration, kSize,
kMoreSegmentsRepeat);
// Expect only the latest S element with 2 segments.
const std::string expected_s_element =
base::StringPrintf(kSElementTemplate, first_s_element_end_time,
kTimeShiftBufferDepthDuration, kMoreSegmentsRepeat);
const int kExpectedRemovedSegments = kRepeat + 1;
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(
expected_s_element, kDefaultStartNumber + kExpectedRemovedSegments)));
}
// More than 1 S element in the result.
// Adds 100 one-second segments. Then add 21 two-second segments.
// This should have all of the two-second segments and 60 one-second
// segments. Note that it expects 60 segments from the first S element because
// the most recent segment added does not count
TEST_P(TimeShiftBufferDepthTest, MoreThanOneS) {
const int kTimeShiftBufferDepth = 100;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int kSize = 20000;
const int64_t kOneSecondDuration = kDefaultTimeScale;
const int kOneSecondSegmentRepeat = 99;
AddSegments(initial_start_time_, kOneSecondDuration, kSize,
kOneSecondSegmentRepeat);
const int64_t first_s_element_end_time =
initial_start_time_ + kOneSecondDuration * (kOneSecondSegmentRepeat + 1);
const int64_t kTwoSecondDuration = 2 * kDefaultTimeScale;
const int kTwoSecondSegmentRepeat = 20;
AddSegments(first_s_element_end_time, kTwoSecondDuration, kSize,
kTwoSecondSegmentRepeat);
const int kExpectedRemovedSegments =
(kOneSecondSegmentRepeat + 1 + kTwoSecondSegmentRepeat * 2) -
kTimeShiftBufferDepth;
std::string expected_s_element = base::StringPrintf(
kSElementTemplate,
initial_start_time_ + kOneSecondDuration * kExpectedRemovedSegments,
kOneSecondDuration, kOneSecondSegmentRepeat - kExpectedRemovedSegments);
expected_s_element +=
base::StringPrintf(kSElementTemplate, first_s_element_end_time,
kTwoSecondDuration, kTwoSecondSegmentRepeat);
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(
expected_s_element, kDefaultStartNumber + kExpectedRemovedSegments)));
}
// Edge case where the last segment in S element should still be in the MPD.
// Example:
// Assuming timescale = 1 so that duration of 1 means 1 second.
// TimeShiftBufferDepth is 9 sec and we currently have
// <S t=0 d=1.5 r=1 />
// <S t=3 d=2 r=3 />
// and we add another contiguous 2 second segment.
// Then the first S element's last segment should still be in the MPD.
TEST_P(TimeShiftBufferDepthTest, UseLastSegmentInS) {
const int kTimeShiftBufferDepth = 9;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int64_t kDuration1 = static_cast<int64_t>(kDefaultTimeScale * 1.5);
const int kSize = 20000;
const int kRepeat1 = 1;
AddSegments(initial_start_time_, kDuration1, kSize, kRepeat1);
const int64_t first_s_element_end_time =
initial_start_time_ + kDuration1 * (kRepeat1 + 1);
const int64_t kTwoSecondDuration = 2 * kDefaultTimeScale;
const int kTwoSecondSegmentRepeat = 4;
AddSegments(first_s_element_end_time, kTwoSecondDuration, kSize,
kTwoSecondSegmentRepeat);
std::string expected_s_element = base::StringPrintf(
kSElementTemplateWithoutR,
initial_start_time_ + kDuration1, // Expect one segment removed.
kDuration1);
expected_s_element +=
base::StringPrintf(kSElementTemplate, first_s_element_end_time,
kTwoSecondDuration, kTwoSecondSegmentRepeat);
EXPECT_THAT(representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_element, 2)));
}
// Gap between S elements but both should be included.
TEST_P(TimeShiftBufferDepthTest, NormalGap) {
const int kTimeShiftBufferDepth = 10;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int64_t kDuration = kDefaultTimeScale;
const int kSize = 20000;
const int kRepeat = 6;
// CHECK here so that the when next S element is added with 1 segment, this S
// element doesn't go away.
CHECK_LT(kRepeat - 1u, static_cast<uint64_t>(kTimeShiftBufferDepth));
CHECK_EQ(kDuration, kDefaultTimeScale);
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
const int64_t first_s_element_end_time =
initial_start_time_ + kDuration * (kRepeat + 1);
const int64_t gap_s_element_start_time = first_s_element_end_time + 1;
AddSegments(gap_s_element_start_time, kDuration, kSize, /* no repeat */ 0);
std::string expected_s_element = base::StringPrintf(
kSElementTemplate, initial_start_time_, kDuration, kRepeat);
expected_s_element += base::StringPrintf(kSElementTemplateWithoutR,
gap_s_element_start_time, kDuration);
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_element, kDefaultStartNumber)));
}
// Timeshift is based on segment duration not on segment time.
TEST_P(TimeShiftBufferDepthTest, HugeGap) {
const int kTimeShiftBufferDepth = 10;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int64_t kDuration = kDefaultTimeScale;
const int kSize = 20000;
const int kRepeat = 6;
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
const int64_t first_s_element_end_time =
initial_start_time_ + kDuration * (kRepeat + 1);
// Big enough gap so first S element should not be there.
const int64_t gap_s_element_start_time =
first_s_element_end_time +
(kTimeShiftBufferDepth + 1) * kDefaultTimeScale;
const int kSecondSElementRepeat = 9;
static_assert(
kSecondSElementRepeat < static_cast<int64_t>(kTimeShiftBufferDepth),
"second_s_element_repeat_must_be_less_than_time_shift_buffer_depth");
AddSegments(gap_s_element_start_time, kDuration, kSize,
kSecondSElementRepeat);
std::string expected_s_element =
base::StringPrintf(kSElementTemplateWithoutR,
initial_start_time_ + kRepeat * kDuration, kDuration) +
base::StringPrintf(kSElementTemplate, gap_s_element_start_time, kDuration,
kSecondSElementRepeat);
const int kExpectedRemovedSegments = kRepeat;
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(
expected_s_element, kDefaultStartNumber + kExpectedRemovedSegments)));
}
// Check if startNumber is working correctly.
TEST_P(TimeShiftBufferDepthTest, ManySegments) {
const int kTimeShiftBufferDepth = 1;
mutable_mpd_options()->mpd_params.time_shift_buffer_depth =
kTimeShiftBufferDepth;
const int64_t kDuration = kDefaultTimeScale;
const int kSize = 20000;
const int kRepeat = 10000;
const int kTotalNumSegments = kRepeat + 1;
AddSegments(initial_start_time_, kDuration, kSize, kRepeat);
const int kExpectedSegmentsLeft = kTimeShiftBufferDepth + 1;
const int kExpectedSegmentsRepeat = kExpectedSegmentsLeft - 1;
const int kExpectedRemovedSegments =
kTotalNumSegments - kExpectedSegmentsLeft;
const int kExpectedStartNumber =
kDefaultStartNumber + kExpectedRemovedSegments;
std::string expected_s_element = base::StringPrintf(
kSElementTemplate,
initial_start_time_ + kExpectedRemovedSegments * kDuration, kDuration,
kExpectedSegmentsRepeat);
EXPECT_THAT(
representation_->GetXml(),
XmlNodeEqual(ExpectedXml(expected_s_element, kExpectedStartNumber)));
}
INSTANTIATE_TEST_CASE_P(InitialStartTime,
TimeShiftBufferDepthTest,
Values(0, 1000));
namespace {
const int kTimeShiftBufferDepth = 2;
const int kNumPreservedSegmentsOutsideLiveWindow = 3;
const int kMaxNumSegmentsAvailable =
kTimeShiftBufferDepth + 1 + kNumPreservedSegmentsOutsideLiveWindow;
const char kSegmentTemplate[] = "memory://$Number$.mp4";
const char kSegmentTemplateUrl[] = "video/$Number$.mp4";
const char kStringPrintTemplate[] = "memory://%d.mp4";
const int64_t kInitialStartTime = 0;
const int64_t kDuration = kDefaultTimeScale;
const uint64_t kSize = 10;
const uint64_t kNoRepeat = 0;
} // namespace
class RepresentationDeleteSegmentsTest : public SegmentTimelineTestBase {
public:
void SetUp() override {
SegmentTimelineTestBase::SetUp();
// Create 100 files with the template.
for (int i = 1; i <= 100; ++i) {
File::WriteStringToFile(
base::StringPrintf(kStringPrintTemplate, i).c_str(), "dummy content");
}
MediaInfo media_info = ConvertToMediaInfo(GetDefaultMediaInfo());
media_info.set_segment_template(kSegmentTemplate);
media_info.set_segment_template_url(kSegmentTemplateUrl);
representation_ =
CreateRepresentation(media_info, kAnyRepresentationId, NoListener());
ASSERT_TRUE(representation_->Init());
mpd_options_.mpd_params.time_shift_buffer_depth = kTimeShiftBufferDepth;
mpd_options_.mpd_params.preserved_segments_outside_live_window =
kNumPreservedSegmentsOutsideLiveWindow;
}
bool SegmentDeleted(const std::string& segment_name) {
std::unique_ptr<File, FileCloser> file_closer(
File::Open(segment_name.c_str(), "r"));
return file_closer.get() == nullptr;
}
};
// Verify that no segments are deleted initially until there are more than
// |kMaxNumSegmentsAvailable| segments.
TEST_F(RepresentationDeleteSegmentsTest, NoSegmentsDeletedInitially) {
for (int i = 0; i < kMaxNumSegmentsAvailable; ++i) {
AddSegments(kInitialStartTime + i * kDuration, kDuration, kSize, kNoRepeat);
}
for (int i = 0; i < kMaxNumSegmentsAvailable; ++i) {
EXPECT_FALSE(
SegmentDeleted(base::StringPrintf(kStringPrintTemplate, i + 1)));
}
}
TEST_F(RepresentationDeleteSegmentsTest, OneSegmentDeleted) {
for (int i = 0; i <= kMaxNumSegmentsAvailable; ++i) {
AddSegments(kInitialStartTime + i * kDuration, kDuration, kSize, kNoRepeat);
}
EXPECT_FALSE(SegmentDeleted(base::StringPrintf(kStringPrintTemplate, 2)));
EXPECT_TRUE(SegmentDeleted(base::StringPrintf(kStringPrintTemplate, 1)));
}
// Verify that segments are deleted as expected with many non-repeating
// segments.
TEST_F(RepresentationDeleteSegmentsTest, ManyNonRepeatingSegments) {
int many_segments = 50;
for (int i = 0; i < many_segments; ++i) {
AddSegments(kInitialStartTime + i * kDuration, kDuration, kSize, kNoRepeat);
}
const int last_available_segment_index =
many_segments - kMaxNumSegmentsAvailable + 1;
EXPECT_FALSE(SegmentDeleted(
base::StringPrintf(kStringPrintTemplate, last_available_segment_index)));
EXPECT_TRUE(SegmentDeleted(base::StringPrintf(
kStringPrintTemplate, last_available_segment_index - 1)));
}
// Verify that segments are deleted as expected with many repeating segments.
TEST_F(RepresentationDeleteSegmentsTest, ManyRepeatingSegments) {
const int kLoops = 4;
const int kRepeat = 10;
for (int i = 0; i < kLoops; ++i) {
AddSegments(kInitialStartTime + i * kDuration * (kRepeat + 1), kDuration,
kSize, kRepeat);
}
const int kNumSegments = kLoops * (kRepeat + 1);
const int last_available_segment_index =
kNumSegments - kMaxNumSegmentsAvailable + 1;
EXPECT_FALSE(SegmentDeleted(
base::StringPrintf(kStringPrintTemplate, last_available_segment_index)));
EXPECT_TRUE(SegmentDeleted(base::StringPrintf(
kStringPrintTemplate, last_available_segment_index - 1)));
}
} // namespace shaka